Recognition of Odia Handwritten Digits using Gradient based Feature Extraction Method and Clonal Selection Algorithm

2019 ◽  
Vol 6 (2) ◽  
pp. 19-33
Author(s):  
Puspalata Pujari ◽  
Babita Majhi

This article aims to recognize Odia handwritten digits using gradient-based feature extraction techniques and Clonal Selection Algorithm-based (CSA) multilayer artificial neural network (MANN) classifier. For the extraction of features which contribute the most towards recognition from images, are extracted using gradient-based feature extraction techniques. Principal component analysis (PCA) is used for dimensionality reduction of extracted features. A MANN is used as a classifier for classification purposes. The weights of the MANN are adjusted using the CSA to get optimized set of weights. The proposed model is applied on Odia handwritten digits taken from the Indian Statistical Institution (ISI), Calcutta, which consists of four thousand samples. The results obtained from the experiment are compared with a genetic-based multi-layer artificial neural network (GA-MANN) model. The recognition accuracy of the CSA-MANN model is found to be 90.75%.

2017 ◽  
Vol 24 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Monika Prucnal ◽  
Adam G. Polak

AbstractEEG signal-based sleep stage classification facilitates an initial diagnosis of sleep disorders. The aim of this study was to compare the efficiency of three methods for feature extraction: power spectral density (PSD), discrete wavelet transform (DWT) and empirical mode decomposition (EMD) in the automatic classification of sleep stages by an artificial neural network (ANN). 13650 30-second EEG epochs from the PhysioNet database, representing five sleep stages (W, N1-N3 and REM), were transformed into feature vectors using the aforementioned methods and principal component analysis (PCA). Three feed-forward ANNs with the same optimal structure (12 input neurons, 23 + 22 neurons in two hidden layers and 5 output neurons) were trained using three sets of features, obtained with one of the compared methods each. Calculating PSD from EEG epochs in frequency sub-bands corresponding to the brain waves (81.1% accuracy for the testing set, comparing with 74.2% for DWT and 57.6% for EMD) appeared to be the most effective feature extraction method in the analysed problem.


Sign in / Sign up

Export Citation Format

Share Document