scholarly journals Effect of Feature Extraction on Automatic Sleep Stage Classification by Artificial Neural Network

2017 ◽  
Vol 24 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Monika Prucnal ◽  
Adam G. Polak

AbstractEEG signal-based sleep stage classification facilitates an initial diagnosis of sleep disorders. The aim of this study was to compare the efficiency of three methods for feature extraction: power spectral density (PSD), discrete wavelet transform (DWT) and empirical mode decomposition (EMD) in the automatic classification of sleep stages by an artificial neural network (ANN). 13650 30-second EEG epochs from the PhysioNet database, representing five sleep stages (W, N1-N3 and REM), were transformed into feature vectors using the aforementioned methods and principal component analysis (PCA). Three feed-forward ANNs with the same optimal structure (12 input neurons, 23 + 22 neurons in two hidden layers and 5 output neurons) were trained using three sets of features, obtained with one of the compared methods each. Calculating PSD from EEG epochs in frequency sub-bands corresponding to the brain waves (81.1% accuracy for the testing set, comparing with 74.2% for DWT and 57.6% for EMD) appeared to be the most effective feature extraction method in the analysed problem.

Author(s):  
Asma Salamatian ◽  
Ali Khadem

Purpose: Sleep is one of the necessities of the body, such as eating, drinking, etc., that affects different aspects of human life. Sleep monitoring and sleep stage classification play an important role in the diagnosis of sleeprelated diseases and neurological disorders. Empirically, classification of sleep stages is a time-consuming, tedious, and complex task, which heavily depends on the experience of the experts. As a result, there is a crucial need for an automatic efficient sleep staging system. Materials and Methods: This study develops a 13-layer 1D Convolutional Neural Network (CNN) using singlechannel Electroencephalogram (EEG) signal for extracting features automatically and classifying the sleep stages. To overcome the negative effect of an imbalance dataset, we have used the Synthetic Minority Oversampling Technique (SMOTE). In our study, the single-channel EEG signal is given to a 1D CNN, without any feature extraction/selection processes. This deep network can self-learn the discriminative features from the EEG signal. Results: Applying the proposed method to sleep-EDF dataset resulted in overall accuracy, sensitivity, specificity, and Precision of 94.09%, 74.73%, 96.43%, and 71.02%, respectively, for classifying five sleep stages. Using single-channel EEG and providing a network with fewer trainable parameters than most of the available deep learning-based methods are the main advantages of the proposed method. Conclusion: In this study, a 13-layer 1D CNN model was proposed for sleep stage classification. This model has an end-to-end complete architecture and does not require any separate feature extraction/selection and classification stages. Having a low number of network parameters and layers while still having high classification accuracy, is the main advantage of the proposed method over most of the previous deep learning-based approaches.


2018 ◽  
Vol 63 (2) ◽  
pp. 177-190 ◽  
Author(s):  
Junming Zhang ◽  
Yan Wu

AbstractMany systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.


2013 ◽  
Vol 23 (03) ◽  
pp. 1350012 ◽  
Author(s):  
L. J. HERRERA ◽  
C. M. FERNANDES ◽  
A. M. MORA ◽  
D. MIGOTINA ◽  
R. LARGO ◽  
...  

This work proposes a methodology for sleep stage classification based on two main approaches: the combination of features extracted from electroencephalogram (EEG) signal by different extraction methods, and the use of stacked sequential learning to incorporate predicted information from nearby sleep stages in the final classifier. The feature extraction methods used in this work include three representative ways of extracting information from EEG signals: Hjorth features, wavelet transformation and symbolic representation. Feature selection was then used to evaluate the relevance of individual features from this set of methods. Stacked sequential learning uses a second-layer classifier to improve the classification by using previous and posterior first-layer predicted stages as additional features providing information to the model. Results show that both approaches enhance the sleep stage classification accuracy rate, thus leading to a closer approximation to the experts' opinion.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zhihong Cui ◽  
Xiangwei Zheng ◽  
Xuexiao Shao ◽  
Lizhen Cui

Sleep stage classification plays an important role in the diagnosis of sleep-related diseases. However, traditional automatic sleep stage classification is quite challenging because of the complexity associated with the establishment of mathematical models and the extraction of handcrafted features. In addition, the rapid fluctuations between sleep stages often result in blurry feature extraction, which might lead to an inaccurate assessment of electroencephalography (EEG) sleep stages. Hence, we propose an automatic sleep stage classification method based on a convolutional neural network (CNN) combined with the fine-grained segment in multiscale entropy. First, we define every 30 seconds of the multichannel EEG signal as a segment. Then, we construct an input time series based on the fine-grained segments, which means that the posterior and current segments are reorganized as an input containing several segments and the size of the time series is decided based on the scale chosen depending on the fine-grained segments. Next, each segment in this series is individually put into the designed CNN and feature maps are obtained after two blocks of convolution and max-pooling as well as a full-connected operation. Finally, the results from the full-connected layer of each segment in the input time sequence are put into the softmax classifier together to get a single most likely sleep stage. On a public dataset called ISRUC-Sleep, the average accuracy of our proposed method is 92.2%. Moreover, it yields an accuracy of 90%, 86%, 93%, 97%, and 90% for stage W, stage N1, stage N2, stage N3, and stage REM, respectively. Comparative analysis of performance suggests that the proposed method is better, as opposed to that of several state-of-the-art ones. The sleep stage classification methods based on CNN and the fine-grained segments really improve a key step in the study of sleep disorders and expedite sleep research.


2018 ◽  
Vol 31 (1) ◽  
pp. 268 ◽  
Author(s):  
Ahmed Talib Abdulameer

  Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead of backpropagation as training algorithm for artificial neural network (ANN). Some other recent training-based Neural Networks, SVM, and KNN classifiers are used for comparison with the proposed classifier. The classifiers are utilized to classify image as normal or abnormal MRI human brain image. The results show that the proposed classifier is outperformed the other competing classifiers.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Zhang ◽  
Bei Wang ◽  
Jin Jing ◽  
Jian Zhang ◽  
Junzhong Zou ◽  
...  

Feature extraction from physiological signals of EEG (electroencephalogram) is an essential part for sleep staging. In this study, multidomain feature extraction was investigated based on time domain analysis, nonlinear analysis, and frequency domain analysis. Unlike the traditional feature calculation in time domain, a sequence merging method was developed as a preprocessing procedure. The objective is to eliminate the clutter waveform and highlight the characteristic waveform for further analysis. The numbers of the characteristic activities were extracted as the features from time domain. The contributions of features from different domains to the sleep stages were compared. The effectiveness was further analyzed by automatic sleep stage classification and compared with the visual inspection. The overnight clinical sleep EEG recordings of 3 patients after the treatment of Continuous Positive Airway Pressure (CPAP) were tested. The obtained results showed that the developed method can highlight the characteristic activity which is useful for both automatic sleep staging and visual inspection. Furthermore, it can be a training tool for better understanding the appearance of characteristic waveforms from raw sleep EEG which is mixed and complex in time domain.


2019 ◽  
Vol 6 (2) ◽  
pp. 19-33
Author(s):  
Puspalata Pujari ◽  
Babita Majhi

This article aims to recognize Odia handwritten digits using gradient-based feature extraction techniques and Clonal Selection Algorithm-based (CSA) multilayer artificial neural network (MANN) classifier. For the extraction of features which contribute the most towards recognition from images, are extracted using gradient-based feature extraction techniques. Principal component analysis (PCA) is used for dimensionality reduction of extracted features. A MANN is used as a classifier for classification purposes. The weights of the MANN are adjusted using the CSA to get optimized set of weights. The proposed model is applied on Odia handwritten digits taken from the Indian Statistical Institution (ISI), Calcutta, which consists of four thousand samples. The results obtained from the experiment are compared with a genetic-based multi-layer artificial neural network (GA-MANN) model. The recognition accuracy of the CSA-MANN model is found to be 90.75%.


Sign in / Sign up

Export Citation Format

Share Document