A Framework for External Interference-Aware Distributed Channel Assignment

Author(s):  
Felix Juraschek ◽  
Mesut Günes ◽  
Bastian Blywis

DES-Chan is a framework for experimentally driven research on distributed channel assignment algorithms in wireless mesh networks. DES-Chan eases the development process by providing a set of common services required by distributed channel assignment algorithms. A new challenge for channel assignment algorithms are sources of external interferences. With the increasing number of wireless devices in the unlicensed radio spectrum, co-located devices that share the same radio channel may have a severe impact on the network performance. DES-Chan provides a sensing component to detect such external devices and predict their future activity. As a proof of concept, the authors present a reference implementation of a distributed greedy channel assignment algorithm. The authors evaluate its performance in the DES-Testbed, a multi-transceiver wireless mesh network with 128 nodes at the Freie Universität Berlin.

Author(s):  
Felix Juraschek ◽  
Mesut Günes ◽  
Bastian Blywis

DES-Chan is a framework for experimentally driven research on distributed channel assignment algorithms in wireless mesh networks. DES-Chan eases the development process by providing a set of common services required by distributed channel assignment algorithms. A new challenge for channel assignment algorithms are sources of external interferences. With the increasing number of wireless devices in the unlicensed radio spectrum, co-located devices that share the same radio channel may have a severe impact on the network performance. DES-Chan provides a sensing component to detect such external devices and predict their future activity. As a proof of concept, the authors present a reference implementation of a distributed greedy channel assignment algorithm. The authors evaluate its performance in the DES-Testbed, a multi-transceiver wireless mesh network with 128 nodes at the Freie Universität Berlin.


Author(s):  
Jatinder Singh Saini ◽  
Balwinder Singh Sohi

Multi-Radio Multi-Channel Wireless Mesh Network (MRMC-WMN) has been considered as one of the key technology for the enhancement of network performance. It is used in a number of real-time applications such as disaster management system, transportation system and health care system. MRMC-WMN is a multi-hop network and allows simultaneous data transfer by using multiple radio interfaces. All the radio interfaces are typically assigned with different channels to reduce the effect of co-channel interference. In MRMC-WMN, when two nodes transmit at the same channel in the range of each other, generates co-channel interference and degrades the network throughput. Co-channel interference badly affects the capacity of each link that reduces the overall network performance. Thus, the important task of channel assignment algorithm is to reduce the co-channel interference and enhance the network performance. In this paper, the problem of channel assignment has been addressed for MRMC-WMN. We have proposed an Interference Aware, Topology, Power and Flow Control (ITPFC) Channel Assignment algorithm for MRMC-WMN. This algorithm assignes the suitable channels to nodes, which provides better link capacity and reduces the co-channel interference. In the previous work performance of the proposed algorithm has been evaluated for a network of 30 nodes. The aim of this paper is to further evaluate the performance of proposed channel assignment algorithm for 40 and 50 nodes network. The results obtained from these networks show the consistent performance in terms of throughput, delay, packet loss and number of channels used per node as compared to LACA, FCPRA and IATC Channel Assignment algorithms.


2012 ◽  
Vol 3 (3) ◽  
pp. 368-374
Author(s):  
Usha Kumari ◽  
Udai Shankar

IEEE 802.16 based wireless mesh networks (WMNs) are a promising broadband access solution to support flexibility, cost effectiveness and fast deployment of the fourth generation infrastructure based wireless networks. Reducing the time for channel establishment is critical for low latency/interactive Applications. According to IEEE 802.16 MAC protocol, there are three scheduling algorithms for assigning TDMA slots to each network node: centralized and distributed the distributed is further divided into two operational modes coordinated distributed and uncoordinated distributed. In coordinated distributed scheduling algorithm, network nodes have to transmit scheduling message in order to inform other nodes about their transfer schedule. In this paper a new approach is proposed to improve coordinated distributed scheduling efficiency in IEEE 802.16 mesh mode, with respect to three parameter Throughput, Average end to end delay and Normalized Overhead. For evaluating the proposed networks efficiency, several extensive simulations are performed in various network configurations and the most important system parameters which affect the network performance are analyzed


2016 ◽  
Vol 2016 ◽  
pp. 1-16
Author(s):  
Pragasen Mudali ◽  
Matthew Olusegun Adigun

Topology Control has been shown to provide several benefits to wireless ad hoc and mesh networks. However these benefits have largely been demonstrated using simulation-based evaluations. In this paper, we demonstrate the negative impact that the PlainTC Topology Control prototype has on topology stability. This instability is found to be caused by the large number of transceiver power adjustments undertaken by the prototype. A context-based solution is offered to reduce the number of transceiver power adjustments undertaken without sacrificing the cumulative transceiver power savings and spatial reuse advantages gained from employing Topology Control in an infrastructure wireless mesh network. We propose the context-based PlainTC+ prototype and show that incorporating context information in the transceiver power adjustment process significantly reduces topology instability. In addition, improvements to network performance arising from the improved topology stability are also observed. Future plans to add real-time context-awareness to PlainTC+ will have the scheme being prototyped in a software-defined wireless mesh network test-bed being planned.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 85903-85912
Author(s):  
Junhua Xing ◽  
Qi Li ◽  
Haixin Sun ◽  
Jie Qi ◽  
Zhenggen Zhu ◽  
...  

Author(s):  
Tarik Mountassir ◽  
Bouchaib Nassereddine ◽  
Abdelkrim Haqiq ◽  
Samir Bennani

Unlike most of proposed solutions that usually consider the overall throughput as the main optimization, Channel Assignment in Wireless Mesh Networks has to ensure connectivity, minimize interference level and guarantee an acceptable throughput. This problem must be solved taking into account all the parameters that influence the output of the proposed algorithm. In this paper, the authors propose an efficient multi-objective optimization model that, simultaneously, optimizes two conflicting objective functions in order to assign channel to radio interfaces subject to connectivity, interference and bandwidth requirements. Then they use the Multi-Objective Particle Swarm Optimization Technique to resolve this problem and provide a non-dominated set of near optimal solutions.


Sign in / Sign up

Export Citation Format

Share Document