wireless devices
Recently Published Documents


TOTAL DOCUMENTS

934
(FIVE YEARS 247)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 3 (1) ◽  
pp. 1-31
Author(s):  
Roman Trüb ◽  
Reto Da Forno ◽  
Lukas Daschinger ◽  
Andreas Biri ◽  
Jan Beutel ◽  
...  

Testbeds for wireless IoT devices facilitate testing and validation of distributed target nodes. A testbed usually provides methods to control, observe, and log the execution of the software. However, most of the methods used for tracing the execution require code instrumentation and change essential properties of the observed system. Methods that are non-intrusive are typically not applicable in a distributed fashion due to a lack of time synchronization or necessary hardware/software support. In this article, we present a tracing system for validating time-critical software running on multiple distributed wireless devices that does not require code instrumentation, is non-intrusive and is designed to trace the distributed state of an entire network. For this purpose, we make use of the on-chip debug and trace hardware that is part of most modern microcontrollers. We introduce a testbed architecture as well as models and methods that accurately synchronize the timestamps of observations collected by distributed observers. In a case study, we demonstrate how the tracing system can be applied to observe the distributed state of a flooding-based low-power communication protocol for wireless sensor networks. The presented non-intrusive tracing system is implemented as a service of the publicly accessible open source FlockLab 2 testbed.


Author(s):  
Islam T. Almalkawi ◽  
Ashraf H. Al-Bqerat ◽  
Awni Itradat ◽  
Jamal N. Al-Karaki

<p>Amplifiers are widely used in signal receiving circuits, such as antennas, medical imaging, wireless devices and many other applications. However, one of the most challenging problems when building an amplifier circuit is the noise, since it affects the quality of the intended received signal in most wireless applications. Therefore, a preamplifier is usually placed close to the main sensor to reduce the effects of interferences and to amplify the received signal without degrading the signal-to-noise ratio. Although different designs have been optimized and tested in the literature, all of them are using larger than 100 nm technologies which have led to a modest performance in terms of equivalent noise charge (ENC), gain, power consumption, and response time. In contrast, we consider in this paper a new amplifier design technology trend and move towards sub 100 nm to enhance its performance. In this work, we use a pre-well-known design of a preamplifier circuit and rebuild it using 45 nm CMOS technology, which is made for the first time in such circuits. Performance evaluation shows that our proposed scaling technology, compared with other scaling technology, extremely reduces ENC of the circuit by more than 95%. The noise spectral density and time resolution are also reduced by 25% and 95% respectively. In addition, power consumption is decreased due to the reduced channel length by 90%. As a result, all of those enhancements make our proposed circuit more suitable for medical and wireless devices.</p>


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 541
Author(s):  
Jian Fang ◽  
Lei Wang ◽  
Zhenquan Qin ◽  
Bingxian Lu ◽  
Wenbo Zhao ◽  
...  

Target tracking is a critical technique for localization in an indoor environment. Current target-tracking methods suffer from high overhead, high latency, and blind spots issues due to a large amount of data needing to be collected or trained. On the other hand, a lightweight tracking method is preferred in many cases instead of just pursuing accuracy. For this reason, in this paper, we propose a Wi-Fi-enabled Infrared-like Device-free (WIDE) method for target tracking to realize a lightweight target-tracking method. We first analyze the impact of target movement on the physical layer of the wireless link and establish a near real-time model between the Channel State Information (CSI) and human motion. Secondly, we make full use of the network structure formed by a large number of wireless devices already deployed in reality to achieve the goal. We validate the WIDE method in different environments. Extensive evaluation results show that the WIDE method is lightweight and can track targets rapidly as well as achieve satisfactory tracking results.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Azeem Mohammed Abdul ◽  
Usha Rani Nelakuditi

Purpose The purpose of this paper to ensure the rapid developments in the radio frequency wireless technology, the synthesis of frequencies for pervasive wireless applications is crucial by implementing the design of low voltage and low power Fractional-N phase locked loop (PLL) for controlling medical devices to monitor remotely patients. Design/methodology/approach The developments urge a technique reliable to phase noise in designing fractional-N PLL with a new eight transistor phase frequency detector and a good linearized charge pump (CP) for speed of operation with minimum mismatches. Findings In applications for portable wireless devices, by proposing a new phase-frequency detector with the removal of dead, blind zones and a modified CP to minimize the mismatch of currents. Originality/value The results are simulated in 45 nm complementary metal oxide semiconductor generic process design kit (GPDK) technology in cadence virtuoso. The phase noise of the proposed Fractiona-N phase locked loop has–93.18, –101.4 and –117 dBc/Hz at 10 kHz, 100 kHz and 1 MHz frequency offsets, respectively, and consumes 3.3 mW from a 0.45 V supply.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 405
Author(s):  
Abd Alazeez Almaleeh ◽  
Ammar Zakaria ◽  
Latifah Munirah Kamarudin ◽  
Mohd Hafiz Fazalul Rahiman ◽  
David Lorater Ndzi ◽  
...  

The moisture content of stored rice is dependent on the surrounding and environmental factors which in turn affect the quality and economic value of the grains. Therefore, the moisture content of grains needs to be measured frequently to ensure that optimum conditions that preserve their quality are maintained. The current state of the art for moisture measurement of rice in a silo is based on grab sampling or relies on single rod sensors placed randomly into the grain. The sensors that are currently used are very localized and are, therefore, unable to provide continuous measurement of the moisture distribution in the silo. To the authors’ knowledge, there is no commercially available 3D volumetric measurement system for rice moisture content in a silo. Hence, this paper presents results of work carried out using low-cost wireless devices that can be placed around the silo to measure changes in the moisture content of rice. This paper proposes a novel technique based on radio frequency tomographic imaging using low-cost wireless devices and regression-based machine learning to provide contactless non-destructive 3D volumetric moisture content distribution in stored rice grain. This proposed technique can detect multiple levels of localized moisture distributions in the silo with accuracies greater than or equal to 83.7%, depending on the size and shape of the sample under test. Unlike other approaches proposed in open literature or employed in the sector, the proposed system can be deployed to provide continuous monitoring of the moisture distribution in silos.


2022 ◽  
Author(s):  
Valentin Catacora ◽  
Federico Guerrero ◽  
Enrique Spinelli

Abstract Purpose: In this work, it is shown that small, battery-powered wireless devices are so robust against electromagnetic interference that single-ended amplifiers can become a viable alternative for biopotential measurements, even without a Driven Right Leg (DRL) circuit. Methods: A power line interference analysis is presented for this case showing that this simple circuitry solution is feasible, and presenting the constraints under which it is so: small-size devices with dimensions less than 40 mm × 20 mm. Results: A functional prototype of a two-electrode wireless acquisition system was implemented using a single-ended amplifier. This allowed validating the power-line interference model with experimental results, including the acquisition of electromyographic (EMG) signals. The prototype, built with a size fulfilling the proposed guidelines, presented power-line interference voltages below 1.2 µVPP when working in an office environment. Conclusion: It can be concluded that a single-ended biopotential amplifier can be used if a sufficiently large isolation impedance is achieved with small-size wireless devices. This approach allows measurements with only two electrodes, a very simple front-end design, and a reduced number of components.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012012
Author(s):  
Avi Sharma ◽  
Pramod Kumar

Abstract A flexible microstrip antenna is a compact antenna that can be coupled with the skin. However, such antennas require to be coupled with an intermediate matching liquid medium which makes the antenna bulky, complicated, and expensive. Body area network devices are wearable wireless devices/sensors that are used to get the information of a patient’s health in terms of physiological changes irrespective of location. A flexible layer made of Polyethylene is chosen as the substrate and a copper patch is levied upon it. This substrate layer lies in between two adhesive layers (GIL GML 1000).In this paper, flexible antennas are designed and simulated for Body area networks (BANs). The S11 parameter, VSWR value, Gain, and the radiation pattern of the antennas are compared. The polyethylene substrate is highly flexible and lightweight; therefore it would be an ideal material to be used as the substrate of the required antenna.


Author(s):  
Kaveh Pahlavan

AbstractImportance of spectrum regulation and management was first revealed on May of 1985 after the release of unlicensed ISM bands resulting in emergence of Wi-Fi, Bluetooth and many other wireless technologies that has affected our daily lives by enabling the emergence of the smart world and IoT era. Today, the idea of a liberated spectrum is circulating around, which can potentially direct wireless networking industry into another revolution by enabling a new paradigm in intelligent spectrum regulation and management. The RF signal radiated from IoT devices as well as other wireless technologies create an RF cloud causing co- and cross-interference to each other. Lack of a science and technology for understanding, measurement, and modeling of the RF cloud interference in near real-time results in inefficient utilization of the precious spectrum, a unique natural resource shared among all wireless devices of the universe in frequency, time, and space. Near real time forecasting of the RF cloud interference is essential to pursue the path to the optimal utilization of spectrum and a liberated spectrum management. This paper presents a historical perspective on the evolution of spectrum regulation and management, explains the diversified meanings of interference for different sectors of the wireless industry, and presents a path for implementing a theoretical foundation for interference monitoring and forecasting to enable the emergence of a liberated spectrum industry and a new paradigm in spectrum management and regulations.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Li Liao ◽  
Chengjun Ji

Machine-to-machine (M2M) communication technology is an emerging technology that can connect smart wireless devices. The most obvious feature of M2M is that the communication between devices does not require human intervention. Therefore, ensuring the low-energy consumption of M2M devices is a necessary condition for prolonging the survival time of their devices. This paper first considers the coexistence of M2M and H2H scenarios. Aimed at the energy efficiency of M2M equipment and the channel capacity of H2H equipment, a multiobjective problem is constructed for joint spectrum and power resource management, and a weighted Chebyshev algorithm is proposed to solve this problem. Secondly, in view of the additional interference problems caused by the introduction of M2M communication, the intercell cooperative link selection algorithm is used to optimize its resilience. The effectiveness of the algorithm is proven by simulation results.


Author(s):  
Camille Merlin S. Tan ◽  
Lawrence Materum

As technology advances, notable scientific research accomplishments have been made. Terahertz (THz) waves have been seen to have endless potential applications that could further improve the current limitations of other frequency bands for imaging applications. Currently, THz waves display great potential in various applications due to their noninvasive and nonionizing features. However, the THz band has not been technically well established. This paper focuses on a comparative survey of the current methods applied in THz imaging in the field of medical and industrial security applications. Different types of methods, findings, advantages, and challenges of surveys ranging from 2016 to 2021 were discussed for both medical and industrial security applications to deepen the understanding of the latest trends, research, and technologies to have efficient THz imaging systems.


Sign in / Sign up

Export Citation Format

Share Document