mac protocol
Recently Published Documents


TOTAL DOCUMENTS

4468
(FIVE YEARS 582)

H-INDEX

64
(FIVE YEARS 8)

Author(s):  
Zaid Hashim Jaber ◽  
Dheyaa Jasim Kadhim ◽  
Ahmed Sabah Al-Araji

<p><span>Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks.</span></p>


2022 ◽  
Vol 22 (2) ◽  
pp. 1-26
Author(s):  
Nikumani Choudhury ◽  
Rakesh Matam ◽  
Mithun Mukherjee ◽  
Jaime Lloret

The IEEE 802.15.4 standard is one of the widely adopted specifications for realizing different applications of the Internet of Things. It defines several physical layer options and Medium Access Control (MAC) sub-layer for devices with low-power operating at low data rates. As devices implementing this standard are primarily battery-powered, minimizing their power consumption is a significant concern. Duty-cycling is one such power conserving mechanism that allows a device to schedule its active and inactive radio periods effectively, thus preventing energy drain due to idle listening. The standard specifies two parameters, beacon order and superframe order, which define the active and inactive period of a device. However, it does not specify a duty-cycling scheme to adapt these parameters for varying network conditions. Existing works in this direction are either based on superframe occupation ratio or buffer/queue length of devices. In this article, the particular limitations of both the approaches mentioned above are presented. Later, a novel duty-cycling mechanism based on MAC parameters is proposed. Also, we analyze the role of synchronization schemes in achieving efficient duty-cycles in synchronized cluster-tree network topologies. A Markov model has also been developed for the MAC protocol to estimate the delay and energy consumption during frame transmission.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Muhammad Bilal Latif ◽  
Feng Liu ◽  
Kai Liu

An autonomous driving environment poses a very stringent requirement for the timely delivery of safety messages in vehicular ad hoc networks (VANETs). Time division multiple access (TDMA)-based medium access control (MAC) protocols are considered a promising solution because of their time-bound message delivery. However, in the event of mobility-caused packet collisions, they may experience an unpredicted and extended delay in delivering messages, which can cause catastrophic accidents. To solve this problem, a distributed TDMA-based MAC protocol with mobility-caused collision mitigation (MCCM-MAC) is presented in this paper. The protocol uses a novel mechanism to detect merging collisions and mitigates them by avoiding subsequent access collisions. One vehicle in the merging collisions retains the time slot, and the others release the slot. The common neighboring vehicles can timely suggest a suitable new time slot for the vacating vehicles, which can avoid access collisions between their packet transmissions. A tie-breakup mechanism is employed to avoid further access collisions. Simulation results show that the proposed protocol reduces packet loss more than the existing methods. Consequently, the average delay between the successfully delivered periodic messages is also reduced.


2022 ◽  
pp. 1-18
Author(s):  
Sowjanya Ramisetty ◽  
Divya Anand ◽  
Kavita ◽  
Sahil Verma ◽  
Abdulellah A. Alaboudi

2022 ◽  
Vol 42 (1) ◽  
pp. 133-148
Author(s):  
Bayan Al-Amri ◽  
Gofran Sami ◽  
Wajdi Alhakami

2021 ◽  
Vol 10 (12) ◽  
pp. 25453-25458
Author(s):  
Mr. Dinesh Prabhu. M ◽  
Dr. Dinesh Senduraja

In Wireless sensor Network, several researchers have provided different routing protocol for sensor networks, particularly routing protocols depending on clusters protocols. Reliability of nodes is necessary parameter in effective sensor networks. We use MAC protocol for controlling the network packets. This is because the usage of cluster based routing has several merits like minimized control messages, re-usability of bandwidth and enhanced power control.  Different cluster based routing protocol is proposed by many researchers for the purpose of reducing the consumption energy in wireless sensor networks. Those techniques reduces the energy consumption but with several disadvantages like lack of QoS, inefficient transmission, etc., To overcome those problems, modified QoS enhanced base station controlled in Mistrial Approach (flooding Technique) for wireless sensor networks is proposed in this work.  Here we reduce the number of retransmission and detect the overlay packets in networks using proposed approach. Simulation results show the better energy consumption, Maximum Life time & Efficient Bandwidth is achieved by flooding management when compared to the conventional techniques


2021 ◽  
Vol 21 (4) ◽  
pp. 1-15
Author(s):  
Ramesh Sekaran ◽  
Rizwan Patan ◽  
Fadi Al-Turjman

A mobile ad hoc network (MANET) is summarized as a combination device that can move, synchronize and converse without any preceding management. Enhancing the lifetime energy is based on the status of the concerned channel. The node is accomplished of control the control messages. Due to unplanned methods of energy conservation, the node lifespan and quality of packet flow is defaced in the existing solution. It results in a network-to-node-energy trade-off, ensuing in a failure of the post-network. This failure results in reduced time-to-live and higher overhead. This paper discusses an effective buffer management mechanism, in addition to proposing a novel performance modeling in Volunteered Computing MANET and tactile internet Next, the best execution the nodes can accomplish under fractional data is completely portrayed for utilities for a general purpose. To associate the space between network efficiency and energy conservation based on the minimal overhead, this article proposes a switch state promoting mutual Optimized MAC protocol for conservation of a node's energy and the optimal use of available nodes before their energy drain. Simulation results are provided as proof of the proposed solution. The simulation results are compared with the existing system with performance measures of delay, throughput, energy consumption, and availability of the node.


2021 ◽  
Vol 7 ◽  
pp. e733
Author(s):  
Abdulrahman Sameer Sadeq ◽  
Rosilah Hassan ◽  
Azana Hafizah Mohd Aman ◽  
Hasimi Sallehudin ◽  
Khalid Allehaibi ◽  
...  

The development of Medium Access Control (MAC) protocols for Internet of Things should consider various aspects such as energy saving, scalability for a wide number of nodes, and grouping awareness. Although numerous protocols consider these aspects in the limited view of handling the medium access, the proposed Grouping MAC (GMAC) exploits prior knowledge of geographic node distribution in the environment and their priority levels. Such awareness enables GMAC to significantly reduce the number of collisions and prolong the network lifetime. GMAC is developed on the basis of five cycles that manage data transmission between sensors and cluster head and between cluster head and sink. These two stages of communication increase the efficiency of energy consumption for transmitting packets. In addition, GMAC contains slot decomposition and assignment based on node priority, and, therefore, is a grouping-aware protocol. Compared with standard benchmarks IEEE 802.15.4 and industrial automation standard 100.11a and user-defined grouping, GMAC protocols generate a Packet Delivery Ratio (PDR) higher than 90%, whereas the PDR of benchmark is as low as 75% in some scenarios and 30% in others. In addition, the GMAC accomplishes lower end-to-end (e2e) delay than the least e2e delay of IEEE with a difference of 3 s. Regarding energy consumption, the consumed energy is 28.1 W/h for GMAC-IEEE Energy Aware (EA) and GMAC-IEEE, which is less than that for IEEE 802.15.4 (578 W/h) in certain scenarios.


Sign in / Sign up

Export Citation Format

Share Document