Secure Information Delivery through High Bitrate Data Embedding within Digital Video and its Application to Audio/Video Synchronization

2012 ◽  
Vol 6 (4) ◽  
pp. 71-93
Author(s):  
Ming Yang ◽  
Chih-Cheng Hung ◽  
Edward Jung

Secure communication has traditionally been ensured with data encryption, which has become easier to break than before due to the advancement of computing power. For this reason, information hiding techniques have emerged as an alternative to achieve secure communication. In this research, a novel information hiding methodology is proposed to deliver secure information with the transmission/broadcasting of digital video. Secure data will be embedded within the video frames through vector quantization. At the receiver end, the embedded information can be extracted without the presence of the original video contents. In this system, the major performance goals include visual transparency, high bitrate, and robustness to lossy compression. Based on the proposed methodology, the authors have developed a novel synchronization scheme, which ensures audio/video synchronization through speech-in-video techniques. Compared to existing algorithms, the main contributions of the proposed methodology are: (1) it achieves both high bitrate and robustness against lossy compression; (2) it has investigated impact of embedded information to the performance of video compression, which has not been addressed in previous research. The proposed algorithm is very useful in practical applications such as secure communication, captioning, speech-in-video, video-in-video, etc.

Author(s):  
K. Praghash ◽  
Ch. Vidyadhari ◽  
G. NirmalaPriya ◽  
Rajan Cristin

Author(s):  
Hamza Sajjad Ahmad ◽  
Muhammad Junaid Arshad ◽  
Muhammad Sohail Akram

To send data over the network, devices need to authenticate themselves within the network. After authentication, the device will be able to send the data in-network. After authentication, secure communication of devices is an important task that is done with an encryption method. IoT network devices have a very small circuit with low resources and low computation power. By considering low power, less memory, low computation, and all the aspect of IoT devices, an encryption technique is needed that is suitable for this type of device. As IoT networks are heterogeneous, each device has different hardware properties, and all the devices are not on one scale. To make IoT networks secure, this paper starts with the secure authentication mechanism to verify the device that wants to be a part of the network. After that, an encryption algorithm is presented that will make the communication secure. This encryption algorithm is designed by considering all the important aspects of IoT devices (low computation, low memory, and cost).


2016 ◽  
Vol 114 (1) ◽  
pp. 19-26 ◽  
Author(s):  
H. Vincent Poor ◽  
Rafael F. Schaefer

Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.


2012 ◽  
Vol 18 (6) ◽  
pp. 445-457 ◽  
Author(s):  
Nicolas Staelens ◽  
Jonas De Meulenaere ◽  
Lizzy Bleumers ◽  
Glenn Van Wallendael ◽  
Jan De Cock ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document