An Energy-Efficient Multilevel Clustering Algorithm for Heterogeneous Wireless Sensor Networks

Author(s):  
Surender Soni ◽  
Vivek Katiyar ◽  
Narottam Chand

Wireless Sensor Networks (WSNs) are generally believed to be homogeneous, but some sensor nodes of higher energy can be used to prolong the lifetime and reliability of WSNs. This gives birth to the concept of Heterogeneous Wireless Sensor Networks (HWSNs). Clustering is an important technique to prolong the lifetime of WSNs and to reduce energy consumption as well, by topology management and routing. HWSNs are popular in real deployments (Corchado et al., 2010), and have a large area of coverage. In such scenarios, for better connectivity, the need for multilevel clustering protocols arises. In this paper, the authors propose an energy-efficient protocol called heterogeneous multilevel clustering and aggregation (HMCA) for HWSNs. HMCA is simulated and compared with existing multilevel clustering protocol EEMC (Jin et al., 2008) for homogeneous WSN. Simulation results demonstrate that the proposed protocol performs better.

Author(s):  
Surender Soni ◽  
Vivek Katiyar ◽  
Narottam Chand

Wireless Sensor Networks (WSNs) are generally believed to be homogeneous, but some sensor nodes of higher energy can be used to prolong the lifetime and reliability of WSNs. This gives birth to the concept of Heterogeneous Wireless Sensor Networks (HWSNs). Clustering is an important technique to prolong the lifetime of WSNs and to reduce energy consumption as well, by topology management and routing. HWSNs are popular in real deployments (Corchado et al., 2010), and have a large area of coverage. In such scenarios, for better connectivity, the need for multilevel clustering protocols arises. In this paper, the authors propose an energy-efficient protocol called heterogeneous multilevel clustering and aggregation (HMCA) for HWSNs. HMCA is simulated and compared with existing multilevel clustering protocol EEMC (Jin et al., 2008) for homogeneous WSN. Simulation results demonstrate that the proposed protocol performs better.


Author(s):  
Eyad Taqieddin ◽  
Moad Mowafi ◽  
Fahed Awad ◽  
Omar Banimelhem ◽  
Hani Maher

This paper proposes a novel energy-efficient clustering protocol for wireless sensor networks. It combines the benefits of using the k-means clustering algorithm with the, recently developed, LEACH with virtual forces (LEACH-VF) protocol. In this work, the k-means algorithm is employed to determine k centroids around which the clusters will be formed. After that, the virtual field force method is applied to these clusters to determine the most suitable positions for each node. The main target of such an approach is to improve the energy balance in the network and to extend the network lifetime. Simulation results show that the proposed protocol extends the time before the first node death, minimizes the variance of the average node energy, and reduces the distance that the sensor nodes travel within their respective clusters.


Author(s):  
Qing Yan Xie ◽  
Yizong Cheng ◽  
Qing-An Zeng

This paper introduces a K-Centers clustering protocol for heterogeneous wireless sensor networks. Energy consumption is an important issue for wireless sensor networks, and sensor nodes consume most of their energy with data delivery. The energy needed to transmit data is proportional to the distance between sensor nodes and either cluster heads or a base station. Clustering is an efficient technique for saving energy and extending network life. The authors' protocol uses a K-centers clustering algorithm to alter the network, topology and establish data routing. The result is k cluster heads which accommodate the distribution of sensor nodes and achieve minimum maximum intra-cluster distances. Their simulations show that their algorithm will outperform K-Means under many but not all conditions. The authors' always produce better minimum maximum intra-cluster distances compared to K-means.


Author(s):  
Alphonse PJA ◽  
Sivaraj C ◽  
Janakiraman T N.

Efficient energy management is a key issue in battery equipped wireless sensor networks (WSNs). The cluster based routing in WSNs is a prominent approach for energy conservation of the network which provides a hierarchical data collection mechanism. In order to maximize the energy conservation of sensor nodes, this paper proposes an Energy-efficient Layered Clustering Algorithm (ELCA) for routing in wireless sensor networks. ELCA constructs two layers of clusters to reduce the transmission rate and to balance the energy consumption of sensors. As early energy depletion of clusterheads (CHs) is a major limitation in clustering, this algorithm provides local remedy for energy suffering CHs through efficient CH substitution scheme. The performance of the proposed algorithm is analysed through extensive simulation experiments and verified by compared results with existing clustering algorithms.


Sign in / Sign up

Export Citation Format

Share Document