Using Markov Decision Process Model with Logic Scoring of Preference Model to Optimize HTN Web Services Composition
Automatic Web services composition can be achieved using AI planning techniques. HTN planning has been adopted to handle the OWL-S Web service composition problem. However, existing composition methods based on HTN planning have not considered the choice of decompositions available to a problem, which can lead to a variety of valid solutions. In this paper, the authors propose a model of combining a Markov decision process model and HTN planning to address Web services composition. In the model, HTN planning is enhanced to decompose a task in multiple ways and find more than one plan, taking into account both functional and non-functional properties. Furthermore, an evaluation method to choose the optimal plan and experimental results illustrate that the proposed approach works effectively. The paper extends previous work by refining a number of aspects of the approach and applying it to a realistic case study.