scholarly journals Directional Control of a Driver-Heavy-Vehicle Closed-Loop System

2011 ◽  
Vol 2-3 ◽  
pp. 33-38
Author(s):  
Shao Hua Li ◽  
Shao Pu Yang ◽  
Na Chen

A two degree of freedom (DOF) lateral dynamic model for a three-axe heavy vehicle is set up and the vehicle ordinary differential equations of motion are derived. The nonlinear lateral tire forces are obtained by Gim model with vertical loads, slip angles and cornering performances of front and rear tires being input parameters. A revised closed-loop single-point preview method is proposed to model the driver’s directional control performance. In this proposed method, the steering angle of front wheels is calculated in real time according to the track error between a certain point ahead of the vehicle and the required route. Then the steering angle is input into the vehicle model to gain the dynamic responses and position of the vehicle in next time step. Thus the driver-heavy-vehicle closed-loop system is built. The dynamic responses of the system are simulated on the condition of double lane change and the effects of system parameters on the path following behavior of the vehicle are researched. Then the advice on how to improve the vehicle directional control ability can be brought forward.

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1376-P
Author(s):  
GREGORY P. FORLENZA ◽  
BRUCE BUCKINGHAM ◽  
JENNIFER SHERR ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1066-P
Author(s):  
HALIS K. AKTURK ◽  
DOMINIQUE A. GIORDANO ◽  
HAL JOSEPH ◽  
SATISH K. GARG ◽  
JANET K. SNELL-BERGEON

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 207-OR
Author(s):  
BRUCE A. BUCKINGHAM ◽  
JENNIFER SHERR ◽  
GREGORY P. FORLENZA ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

2021 ◽  
Vol 26 (1) ◽  
pp. 21
Author(s):  
Ahmad Taher Azar ◽  
Fernando E. Serrano ◽  
Nashwa Ahmad Kamal

In this paper, a loop shaping controller design methodology for single input and a single output (SISO) system is proposed. The theoretical background for this approach is based on complex elliptic functions which allow a flexible design of a SISO controller considering that elliptic functions have a double periodicity. The gain and phase margins of the closed-loop system can be selected appropriately with this new loop shaping design procedure. The loop shaping design methodology consists of implementing suitable filters to obtain a desired frequency response of the closed-loop system by selecting appropriate poles and zeros by the Abel theorem that are fundamental in the theory of the elliptic functions. The elliptic function properties are implemented to facilitate the loop shaping controller design along with their fundamental background and contributions from the complex analysis that are very useful in the automatic control field. Finally, apart from the filter design, a PID controller loop shaping synthesis is proposed implementing a similar design procedure as the first part of this study.


Sign in / Sign up

Export Citation Format

Share Document