Study on Toughening Effect in EPS Concrete

2011 ◽  
Vol 105-107 ◽  
pp. 1717-1722
Author(s):  
De Hui Zhao ◽  
Jin Yu Xu ◽  
Er Lei Bai

To study on the toughing effect of EPS in the plain concrete, the EPS concrete with 10%,20%,30%,40%,50% EPS volume fraction were prepared. Taking specific energy absorption as the index, the toughing effect of EPS concrete with different EPS volume fraction under impact loading were studied using a 100-mm-diameter split Hopkinson pressure bar(SHPB) apparatus, and the toughing effect mechanism of the concrete was discussed. The results show that the toughing effect of the EPS concrete increases with the average strain rate for the strain rate effect, which takes on obvious strain rate dependency. For the EPS microscopic structure effect, the toughing effect of the EPS concrete increases with the EPS volume fraction in 10~30%. Its toughing effect reduces somewhat when the EPS volume fraction reaches 40~50%. To improve the deformation property, the optimum volume fraction of EPS is 20%.

2011 ◽  
Vol 71-78 ◽  
pp. 809-814 ◽  
Author(s):  
Er Lei Bai ◽  
Jin Yu Xu ◽  
Zhi Gang Gao

The EPS concrete with 10%,20%,30%,40%,50% EPS volume fraction were prepared. Taking critical strain as the index, the deformation property of EPS concrete with different EPS volume fraction under impact loading were studied using a 100-mm-diameter split Hopkinson pressure bar(SHPB) apparatus. The results show that the deformation property of the EPS concrete increases with the average strain rate for the strain rate effect, which takes on obvious strain rate dependency. For the EPS microscopic structure effect, the deformation property of the EPS concrete increases with the EPS volume fraction in 0~40%. Its deformation property reduces somewhat when the EPS volume fraction reaches 50%. To improve the deformation property, the optimum volume fraction of EPS is 40%.


2015 ◽  
Vol 816 ◽  
pp. 795-803
Author(s):  
Yan Ling Wang ◽  
Song Xiao Hui ◽  
Wen Jun Ye ◽  
Rui Liu

The mechanical properties and fracture failure behavior of the near β-type Ti-5Al-5Mo-5V-3Cr-X (X = 1Fe or 1Zr) titanium alloys were studied by Split Hopkinson Pressure Bar (SHPB) experiment under the dynamic loading conditions at a strain rate of 1.5 × 103 s-1–5.0 × 103 s-1. Results showed that the SHPB specimen fractured in the direction of maximum shearing stress at an angle of 45° with the compression axis. The fracture surface revealed the shear and tension zones with cleavage steps and parabolic dimples. Severe early unloading was observed on the Ti-5553 alloy under a strain rate of 4,900 s-1 loading condition, and the dynamic property of the Ti-55531Zr alloy was proved to be the optimal.


2021 ◽  
Vol 1035 ◽  
pp. 591-595
Author(s):  
Dan Guo ◽  
Jian Ming Liu ◽  
De Ming Zhang ◽  
Xin Zhang ◽  
Tong Liu

The purpose of this investigation is to study the dynamic hardness of MCrAlY abradable coatings under different strain rates. A dynamic indentation device based on the split Hopkinson pressure bar system (SHPB) was used. The results show that the hardness of MCrAlY coating increased with the increase of the strain rate, which has a positive strain rate effect. In addition, the difference of the static hardness of MCrAlY coating prepared by HVOF and LPPS was only 4%, while the difference in dynamic hardness was 16%.


2018 ◽  
Vol 183 ◽  
pp. 04005 ◽  
Author(s):  
Bar Nurel ◽  
Moshe Nahmany ◽  
Adin Stern ◽  
Nahum Frage ◽  
Oren Sadot

Additive manufacturing by Selective Laser Melting of metals is attracting substantial attention, due to its advantages, such as short-time production of customized structures. This technique is useful for building complex components using a metallic pre-alloyed powder. One of the most used materials in AMSLM is AlSi10Mg powder. Additively manufactured AlSi10Mg may be used as a structural material and it static mechanical properties were widely investigated. Properties in the strain rates of 5×102–1.6×103 s-1 and at higher strain rates of 5×103 –105 s-1 have been also reported. The aim of this study is investigation of dynamic properties in the 7×102–8×103 s-1 strain rate range, using the split Hopkinson pressure bar technique. It was found that the dynamic properties at strain-rates of 1×103–3×103 s-1 depend on a build direction and affected by heat treatment. At higher and lower strain-rates the effect of build direction is limited. The anisotropic nature of the material was determined by the ellipticity of samples after the SHPB test. No strain rate sensitivity was observed.


2011 ◽  
Vol 284-286 ◽  
pp. 1542-1545 ◽  
Author(s):  
Qing Wen Ding ◽  
Yu Ren ◽  
Cheng Wen Tan ◽  
Jing Zhang ◽  
Xiao Dong Yu

A Split Hopkinson Pressure Bar system was employed to investigate the compressive dynamic mechanical behaviors of Ti-10V-2Fe-3Al (Ti-1023) alloy with lamellar microstructure, over a broad strain rates ranging from 1500/s to 5100/s. The results reveal that the strain rate has a significant effect on the flow stress of Ti-1023 alloy, and there exists serious thermal softening as the strain rate exceeds 3200/s. The critical strain rate of fracture for this alloy is 2300/s. The microstructure examination indicated that adiabatic shear bands (ASBs) bifurcate more intensely with the increasing of strain rate. Micro-voids nucleate either in the ASB or interface between shear band and matrix bulk. Finally, fracture of this alloy proceeds through the nucleation, growth and coalescence of these voids and cracks along the ASBs.


2010 ◽  
Vol 168-170 ◽  
pp. 2619-2624
Author(s):  
Chuan Xiong Liu ◽  
Yu Long Li

Dynamic compressive tests were carried out for concrete specimens after exposure to temperatures 23°C, 400°C, 600°C and 800°C by using Split Hopkinson Pressure Bar(SHPB) apparatus. Cylindrical specimens with 98mm in diameter and 49mm in length were used in tests. The strain rates achieved in tests ranged from 30s-1 to 220s-1. The results showed that the compressive strength increases with increasing strain-rate, but decreases with the increase of temperature. However, the effect of strain-rate on improving the compressive strength of concrete decreases with the increase of temperature. Moreover, the strain-rate has an improvement on the peak strain of concrete, and the accretion rate increases with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document