Research on MPLS Network Topology Aggregation Algorithm With The Effective Connected Dominating Sets

2012 ◽  
Vol 155-156 ◽  
pp. 1025-1029 ◽  
Author(s):  
Jing Feng ◽  
Sheng Qian Ma ◽  
Man Hong Fan ◽  
Ke Ning Wang

Using dominating set can aggregate the complex physical network topologies into simple virtual topologies and reduce the cost of the networks. In the Multi-Protocol Label Switching (MPLS) network, the dominating set constructed based on label router can effectively aggregate MPLS network topology and reduce the amount of Label Switching Path (LSP), so as to save the expenses of network maintain information. However, simply considering the size of dominating set can't guarantee the best performance of the networks after aggregating. Therefore, an improved algorithm based on breadth-first search spanning tree is proposed, considering the size of the dominating set, bandwidth performance of the nodes and path length between nodes, which can effectively extend the MPLS network, with excellent bandwidth performance and reduce the data transmission delay.

2019 ◽  
Vol 12 (3) ◽  
pp. 978-998
Author(s):  
Ferdinand P. Jamil ◽  
Hearty Nuenay Maglanque

Let $G$ be a connected graph. A cost effective dominating set in a graph $G$ is any set $S$ of vertices in $G$ satisfying the condition that each vertex in $S$ is adjacent to at least as many vertices outside $S$ as inside $S$ and every vertex outside $S$ is adjacent to at least one vertex in $S$. The minimum cardinality of a cost effective dominating set is the cost effective domination number of $G$. The maximum cardinality of a cost effective dominating set is the upper cost effective domination number of $G$. A cost effective dominating set is said to be minimal if it does not contain a proper subset which is itself a cost effective dominating in $G$. The maximum cardinality of a minimal cost effective dominating set in a graph $G$ is the minimal cost effective domination number of $G$.In this paper, we characterized the cost effective dominating sets in the join, corona and composition of graphs. As direct consequences, we the bounds or the exact cost effective domination numbers, minimal cost effective domination numbers and upper cost effective domination numbers of these graphs were obtained.


2021 ◽  
Vol 11 (3) ◽  
pp. 1241
Author(s):  
Sergio D. Saldarriaga-Zuluaga ◽  
Jesús M. López-Lezama ◽  
Nicolás Muñoz-Galeano

Microgrids constitute complex systems that integrate distributed generation (DG) and feature different operational modes. The optimal coordination of directional over-current relays (DOCRs) in microgrids is a challenging task, especially if topology changes are taken into account. This paper proposes an adaptive protection approach that takes advantage of multiple setting groups that are available in commercial DOCRs to account for network topology changes in microgrids. Because the number of possible topologies is greater than the available setting groups, unsupervised learning techniques are explored to classify network topologies into a number of clusters that is equal to the number of setting groups. Subsequently, optimal settings are calculated for every topology cluster. Every setting is saved in the DOCRs as a different setting group that would be activated when a corresponding topology takes place. Several tests are performed on a benchmark IEC (International Electrotechnical Commission) microgrid, evidencing the applicability of the proposed approach.


2014 ◽  
Author(s):  
Theophilos Papadimitriou ◽  
Periklis Gogas ◽  
Georgios Sarantitis ◽  
Maria Matthaiou

Sign in / Sign up

Export Citation Format

Share Document