label switching
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 52)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
akuwan saleh

Multi Protocol Label Switching (MPLS), merupakan arsitektur jaringan yang didefinisikan oleh IETF untuk memadukan mekanisme label swapping di layer dua dengan routing di layer tiga yang berguna untuk mempercepat pengiriman paket Routing eksplisit memberikan semua keuntungan MPLS, termasuk kemampuan melakukan traffic engineering dan routing kebijakan. Kecepatan transfer data menjadi masalah yang sering dialami dalam jaringan komputer, sehingga diperlukan proses yang cepat untuk mengatasi pengiriman dan pengambilan data tersebut dengan mengutamakan efisiensi waktu, sehingga user tidak perlu membuang banyak waktu. Dengan demikian, dibuatlah sebuah jaringan komputer dengan memanfaatkan teknologi berbasis Multiprotocol Label Switching (MPLS).Jaringan MPLS ini merupakan jaringan yang akan menambahkan label pada setiap paket yang akan dikirimkan, dengan pelabelan ini maka data yang akan dikirimkan akan menjadi lebih cepat sampai pada tujuan. Hal ini dikarenakan router hanya akan menganalisa label yang diberikan pada tiap paket.Pada tugas akhir ini akan menitikberatkan pada pembangunan aplikasi jaringan secara test-bed yangmampu merepresentasikan MPLS pada jaringan IPv6 berbasis OSPF beserta analisis terhadap parameter QoS dari hasil pengukuran. Pada tugas akhir ini menitikberatkan pada pembangunan aplikasi jaringan secara test-bed yang mampu merepresentasikan MPLS pada jaringan IPv6 beserta analisis terhadap parameter QoS. Dari hasil pengukuran didapatkan bahwa jaringan MPLS (Multi Protocol Label Switching) akan bekerja secara optimal apabila terdapat banyak switching dalam sebuah jaringan, selain itu jaringan MPLS akan terasa dampaknya jika pengiriman data dilakukan dalam kapasitas ber-gigabyte.


2021 ◽  
Author(s):  
Ziheng Yang ◽  
Thomas Flouris

The multispecies coalescent with introgression (MSci) model accommodates both the coalescent process and cross-species introgression/ hybridization events, two major processes that create genealogical fluctuations across the genome and gene-tree-species-tree discordance. Full likelihood implementations of the MSci model take such fluctuations as a major source of information about the history of species divergence and gene flow, and provide a powerful tool for estimating the direction, timing and strength of cross-species introgression using multilocus sequence data. However, introgression models, in particular those that accommodate bidirectional introgression (BDI), are known to cause unidentifiability issues of the label-switching type, whereby different models or parameters make the same predictions about the genomic data and thus cannot be distinguished by the data. Nevertheless, there has been no systematic study of unidentifiability when full likelihood methods are applied. Here we characterize the unidentifiability of arbitrary BDI models and derive simple rules for its identification. In general, an MSci model with k BDI events has 2^k unidentifiable towers in the posterior, with each BDI event between sister species creating within-model unidentifiability and each BDI between non-sister species creating cross-model unidentifiability. We develop novel algorithms for processing Markov chain Monte Carlo (MCMC) samples to remove label switching and implement them in the BPP program. We analyze genomic sequence data from Heliconius butterflies as well as synthetic data to illustrate the utility of the BDI models and the new algorithms.


Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 308
Author(s):  
Kai-Sheng Chen ◽  
Chao-Chin Yang

In this paper, an optical buffering solution based on label switching is proposed, where packets are buffered by identifying and renewing the light labels of pseudo-orthogonal codes. The buffer overflow occurs when label switching fails to perform on the queued packets due to the insufficient labels. Assigning an increased code number to the buffer could reduce the overflow effect, but the decoder noise mitigates its efficiency. Therefore, we study a noise-immune labeling method of residual function by advancing the correlation properties of the existing codes. The proposed label-switching scheme improves the solution efficiency to buffer overflow as a lower code-error probability can be reached. Moreover, multiple label codes can be simultaneously generated from a shared light source to achieve a power-efficient buffer structure.


Author(s):  
Oba Zubair Mustapha ◽  
Muhammad Ali ◽  
Yim Fun Hu ◽  
Raed A. Abd-Alhameed

An essential solution is available in Multi-protocol label switching (MPLS), which solve the problems faced by present-day networks: speed, scalability, quality-of-service (QoS) management, and traffic engineering. This paper is an extension of work on Fuzzy based Packet Scheduling Algorithm (FPSA) combined with Packets Processing Algorithm (PPA) in an Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) networks. This will make provision for an intelligent service to the Label Switched Path (LSP) in MPLS networks. Several research work have been proposed on the MPLS Traffic Engineering. However, it is still imperative to further research on the effect of bandwidth increment on the core network using different mechanisms such as the analytical model of MPLS, expert-based packet scheduling algorithm for MPLS QoS support. Since MPLS is not able to provide intelligent routing, it is necessary to propose an intelligent expert system of FPSA combined with PPA. And analytical model of packet forwarding in the MPLS network would be given to provide suitable solution to traffic congestion and reliable services. Furthermore, the network model created using Network Simulator (NS 2), which carries non-real time application such as File Transfer Protocol (FTP) with bandwidth variations. The results obtained from trace files are interpreted by AWK script and used for the further analysis.


2021 ◽  
Vol 19 ◽  
pp. 305-309
Author(s):  
Sumit Kushwaha

Because of the very high loss rate in general activity, enhancements in connection and transmission innovations have made it more difficult to evaluate packet loss utilizing dynamic execution estimation techniques with plotted traffic. That, along with seriously requesting administration level necessities, implies that network administrators currently should have the option to quantify the loss of the actual user data traffic utilizing inactive execution estimation strategies. Multiprotocol Label Switching (MPLS) strategy portrays the prerequisite for presenting stream characters inside the MPLS architecture. This paper depicts a strategy for achieving this by utilizing a method called Synonymous Flow Label (SFL) in which names that imitate the conduct of different labels give the recognizable proof assistance. These identifiers can be utilized to trigger per stream procedure on the packet at the receiving label switching router.


2021 ◽  
pp. 951-1016
Author(s):  
Chris Carthern ◽  
William Wilson ◽  
Noel Rivera

2020 ◽  
pp. 001316442097061
Author(s):  
Kristina R. Cassiday ◽  
Youngmi Cho ◽  
Jeffrey R. Harring

Simulation studies involving mixture models inevitably aggregate parameter estimates and other output across numerous replications. A primary issue that arises in these methodological investigations is label switching. The current study compares several label switching corrections that are commonly used when dealing with mixture models. A growth mixture model is used in this simulation study, and the design crosses three manipulated variables—number of latent classes, latent class probabilities, and class separation, yielding a total of 18 conditions. Within each of these conditions, the accuracy of a priori identifiability constraints, a priori training of the algorithm, and four post hoc algorithms developed by Tueller et al.; Cho; Stephens; and Rodriguez and Walker are tested to determine their classification accuracy. Findings reveal that, of all a priori methods, training of the algorithm leads to the most accurate classification under all conditions. In a case where an a priori algorithm is not selected, Rodriguez and Walker’s algorithm is an excellent choice if interested specifically in aggregating class output without consideration as to whether the classes are accurately ordered. Using any of the post hoc algorithms tested yields improvement over baseline accuracy and is most effective under two-class models when class separation is high. This study found that if the class constraint algorithm was used a priori, it should be combined with a post hoc algorithm for accurate classification.


Sign in / Sign up

Export Citation Format

Share Document