Videogrammetry of the Model’s Attitude in Wind Tunnel Testing

2012 ◽  
Vol 190-191 ◽  
pp. 1273-1277 ◽  
Author(s):  
Zheng Yu Zhang ◽  
Zhong Xiang Sun ◽  
Xu Hui Huang ◽  
Yan Sun

The advanced precision of drag coefficient is 0.0001 for the high speed wind tunnel test of measuring forces, the model’s angle of attack precision is ≤0.01°following errors distribution. A videogrammetric method of model’s attitude is therefore proposed, its uncertainty is investigated, and a compensation method of its systematic error is also presented by this paper. The three engineering videogrammetric experiments of attack angle in 2 meter supersonic wind tunnel testing have demonstrated that measuring standard deviation of videogrammetric measurement system established by this paper is ≤0.0094°, in addition it neither destroys the model’s shape, nor changes the stiffness or strength, so it is useful and effective.

2012 ◽  
Vol 588-589 ◽  
pp. 1050-1053
Author(s):  
Xu Hui Huang ◽  
Zheng Yu Zhang

The videogrammetric measurement is a favorite technology in wind tunnel testing, because it neither destroys the model’s shape, nor changes the stiffness or strength. In this paper, a videogrammetric measurement system(VMS) is introduced, and it is used to measure model’s attack angle. Three engineering videogrammetric experiments of attack angle in 2 meter supersonic wind tunnel testing have demonstrated that the precision of VMS established by this paper is ≤0.0094°, so it is useful and effective.


2021 ◽  
Author(s):  
Tony Estrada ◽  
Kevin R. Anderson ◽  
Ivan Gundersen ◽  
Chuck Johnston

Abstract This paper presents results of Computational Fluid Dynamics (CFD) modeling and experimental wind tunnel testing to predict the drag coefficient for a Human Powered Vehicle (HPV) entered in the World Human Powered Speed Challenge (WHPSC). Herein, a comparison of CFD to wind tunnel test data is presented for ten different HPV designs. The current study reveals that streamlining the nose cone, tail cone, and wheel housing allows for a reduction of drag forces in critical areas, and a reduced drag coefficient. This allows for a selection to be made during the design phase, prior to manufacturing. Drag coefficients were found to be in the range of 0.133 < CD < 0.273, depending on the type of HPV considered. Wind tunnel testing was performed on scale models of the HPV showing agreement to the CFD results on average to within 16%. The wind tunnel testing showed a 7.7% decrease in drag coefficient from the baseline HPV of 2019 to the baseline HPV of 2020. Thus, the wind tunnel data supported by CFD analysis was used to assist in the design of the HPV.


2014 ◽  
Vol 986-987 ◽  
pp. 1629-1633
Author(s):  
Zheng Yu Zhang ◽  
Xu Hui Huang ◽  
Jiang Yin ◽  
Han Xuan Lai

Videogrammetric measurement is a research focus for the organizations of wind tunnel test because of its no special requirements on the test model, its key techniques for the vibration environment of the high speed wind tunnel are introduced by this paper, such as the solution of exterior parameters with big-angle large overlap, the algorithm of image processing for extracting marked point, the method of camera calibration and wave-front distortion field measurement. The great requirements and application prospects of videogrammetry in wind tunnel fine testing have been demonstrated by several practice experiments, including to measure test model’s angle of attack, dynamic deformations and wave-front distortion field in high speed wind tunnels whose test section size is 2 meters.


Author(s):  
Allen Witkowski ◽  
Mike Kandis ◽  
James Reuter ◽  
Walter Machalick ◽  
Richard Kelsch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document