Finite Element Resistivity Forward Modeling Using Algebraic Multigrid Preconditioned Conjugate Gradient Method

2012 ◽  
Vol 249-250 ◽  
pp. 792-797
Author(s):  
Gui Hong Zou ◽  
Hua Qing Liang

An algebraic multigrid by smoothed aggregation preconditioned conjugate gradient method is developed to solve the liner system arising from 3-D direct current finite element resistivity forward modeling. The algorithm combines the efficiency of algebraic multigrid method and the stability of conjugate gradient method. Algebraic multigrid by smoothed aggregation keep in high-efficiency while simulation using local quasi-uniform mesh and its convergence effect will reduce while numerical modeling using anisotropic stretched grids. However tensor product non-equidistant mesh, a kind of anisotropic stretched grids, is often used in 3-D direct current resistivity forward modeling. In order to improve this situation, a factor is added to guide correct aggregation. Consequently, a typical example is used to prove that the improvement is the right. Finally, it is natural to conclude that the algorithm suggested in this paper is efficient and robust whether simulation using local quasi-uniform mesh or tensor product non-equidistant mesh

Author(s):  
Noriyuki Kushida ◽  
Hiroshi Okuda ◽  
Genki Yagawa

In this paper, the convergence behavior of large-scale parallel finite element method for the stress singular problems was investigated. The convergence behavior of iterative solvers depends on the efficiency of the preconditioners. However, efficiency of preconditioners may be influenced by the domain decomposition that is necessary for parallel FEM. In this study the following results were obtained: Conjugate gradient method without preconditioning and the diagonal scaling preconditioned conjugate gradient method were not influenced by the domain decomposition as expected. symmetric successive over relaxation method preconditioned conjugate gradient method converged 6% faster as maximum if the stress singular area was contained in one sub-domain.


Sign in / Sign up

Export Citation Format

Share Document