Panel Shear Strength of Steel Coupling Beam-Pseudo Strain Hardening Cementitious Composite Wall Connection

2013 ◽  
Vol 328 ◽  
pp. 965-969 ◽  
Author(s):  
Wan Shin Park ◽  
Jeong Eun Kim ◽  
Sun Woong Kim ◽  
Song Hee Yun ◽  
Nam Young Eom ◽  
...  

Hybrid coupled wall systems, where steel coupling beams couple two or more pseudo strain hardening cementitious composite (PSH2C) shear wall can be used in medium and high-rise construction subjected to earthquake. This paper addresses the panel shear strength of steel coupling beams - PSH2C shear wall connection. Test variables included the connection detail in hybrid coupled shear wall system. The results show that Specimens PSH2C-PSFF and PSH2C-PSFFT exhibits greater panel shears strength than Specimen PSH2C-PSF.

2013 ◽  
Vol 353-356 ◽  
pp. 2119-2122
Author(s):  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Young Il Jang ◽  
Hyun Do Yun

This paper addresses the seismic behavior of pseudo strain hardening cementitious composite (PSH2C) coupling beams with different failure modes in hybrid coupled shear wall. Test variables included the ratio of steel coupling beam strength to beam-wall connection strength. The results show that Specimen PSH2C-SCF exhibits a better stable behavior in comparison with Specimens PSH2C-SBVRT and PSH2C-FCF.


2012 ◽  
Vol 204-208 ◽  
pp. 1229-1232
Author(s):  
Sun Woong Kim ◽  
Wan Shin Park ◽  
Nam Young Eom ◽  
Hyun Do Yun

Hybrid coupled shear wall system with steel coupling beams has known as the effective lateral load resisting system for tall buildings subjected to earthquake. This paper addresses the influence on horizontal ties of steel coupling beams in pseudo strain hardening cementitious composite (PSH2C) hybrid coupled shear wall. Test variables included the connection detail and types of material, concrete and PSH2C, in the connection region. The results show that Specimen PSH2C-SB and PSH2C-SBVRT exhibits a better stable behavior than Specimens HCWS-SB and HCWS-SBVRT.


2013 ◽  
Vol 351-352 ◽  
pp. 556-559
Author(s):  
Sun Woong Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Hyun Do Yun ◽  
Young Il Jang

Hybrid coupled shear wall with steel coupling beams has often been used as load-resisting system of high-rise buildings under lateral loads. However, joint between steel beam and shear wall is under combined and high stress. Reinforcement details of the joint are very heavy. This study addresses the effect of shear wall cement composites type in hybrid wall system on the seismic performance of steel coupling beams embedded in shear wall. The main test variables were the failure mode of steel coupling beam and types of cement composites, such as PSH2C and concrete, for shear wall.


Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2005 ◽  
Vol 61 (7) ◽  
pp. 912-941 ◽  
Author(s):  
Wan-Shin Park ◽  
Hyun-Do Yun ◽  
Sun-Kyoung Hwang ◽  
Byung-Chan Han ◽  
Il Seung Yang

1998 ◽  
Vol 25 (5) ◽  
pp. 803-818 ◽  
Author(s):  
Kent A Harries ◽  
Denis Mitchell ◽  
Richard G Redwood ◽  
William D Cook

The design and nonlinear dynamic analyses of four coupled wall prototype structures are presented. Two ductile partially coupled and two ductile coupled wall structures are considered, each having reinforced concrete and steel coupling beams. The design of each of the prototype structures was based on the provisions of the 1995 National Building Code of Canada. Nonlinear dynamic analyses of each structure, using four different scaled earthquake ground motions are presented and the results discussed. Comparisons of the responses of the structures with concrete and steel coupling beams are made, demonstrating the advantages of using steel beams to couple reinforced concrete walls.Key words: composite construction, coupled wall, diagonally reinforced concrete coupling beam, "flexure critical" steel coupling beam, seismic design, "shear critical" steel coupling beam.


Sign in / Sign up

Export Citation Format

Share Document