The Design of Output Feedback Controller for Inverted Pendulum System

2013 ◽  
Vol 336-338 ◽  
pp. 489-492
Author(s):  
Hong Xing Li ◽  
An Shan Lu

Inverted pendulum system is a complex, non-linear and uncertain high-order system. It is a simple model of the rockets vertical attitude control and two-legged walking robot control. It is used to study and validation of different control methods. The paper analysis the non-linear inverted pendulum system, then deduces sufficiency conditions of the existence of controller with output feedback and designs controller. It utilizes MATLAB software to get the answer. The feasibility of control method and robustness of controller are demonstrated by numerical examples.

2013 ◽  
Vol 675 ◽  
pp. 31-34
Author(s):  
Hong Xing Li ◽  
Yong Xin Zhang

Inverted pendulum system is a non-linear,natural instability and uncertain system. As a controlled objects of control system in mechanical industry, it can be analysis and verification by different control theory and methods. The paper analysis the non-linear inverted pendulum system, then deduces sufficiency conditions of the existence of controller with state feedback. It utilizes standard digital software to get the answer. The feasibility and robustness is demonstrated by numerical examples.


Robotica ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 29-47 ◽  
Author(s):  
G. Rigatos ◽  
K. Busawon ◽  
J. Pomares ◽  
M. Abbaszadeh

SummaryThe article proposes a nonlinear optimal control method for the model of the wheeled inverted pendulum (WIP). This is a difficult control and robotics problem due to the system’s strong nonlinearities and due to its underactuation. First, the dynamic model of the WIP undergoes approximate linearization around a temporary operating point which is recomputed at each time step of the control method. The linearization procedure makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. For the linearized model of the wheeled pendulum, an optimal (H-infinity) feedback controller is developed. The controller’s gain is computed through the repetitive solution of an algebraic Riccati equation at each iteration of the control algorithm. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, by using the H-infinity Kalman Filter as a robust state estimator, the implementation of a state estimation-based control scheme becomes also possible.


2015 ◽  
Vol 76 ◽  
pp. 290-295 ◽  
Author(s):  
R. Ngadengon ◽  
Y.M. Sam ◽  
J.H.S. Osman ◽  
R. Tomari ◽  
W.N. Wan Zakaria

Sign in / Sign up

Export Citation Format

Share Document