Passenger Route Choice Behavior with Congestion Consideration

2013 ◽  
Vol 368-370 ◽  
pp. 1876-1880 ◽  
Author(s):  
Ying Zeng ◽  
Jun Li ◽  
Hui Zhu

Few studies have adequately focused on passenger route choice behavior with congestion consideration, or provided useful guidance on passenger route choice and hence the transit assignment model, which is the writing motivation of this paper. With congestion consideration, travel cost is assessed and and ways to reduce it also identified. Finally, an actual transit network of Chengdu is used as a case study to demonstrate the benefits of the proposed model. The result indicates that the vehicle capacity is an important factor that cant be ignored and a better understanding of passenger route behavior could significantly benefit public transit system.

2018 ◽  
Vol 2018 ◽  
pp. 1-28 ◽  
Author(s):  
Dewei Li ◽  
Yufang Gao ◽  
Ruoyi Li ◽  
Weiteng Zhou

Route choice is one of the most critical passenger behaviors in public transit research. The utility maximization theory is generally used to model passengers’ route choice behavior in a public transit network in previous research. However, researchers have found that passenger behavior is far more complicated than a single utility maximization assumption. Some passengers tend to maximize their utility while others would minimize their regrets. In this paper, a schedule-based transit assignment model based on the hybrid of utility maximization and regret minimization is proposed to study the passenger route choice behavior in an urban rail transit network. Firstly, based on the smart card data, the space-time expanded network in an urban rail transit was constructed. Then, it adapts the utility maximization (RUM) and the regret minimization theory (RRM) to analyze and model the passenger route choice behavior independently. The utility values and the regret values are calculated with the utility and the regret functions. A transit assignment model is established based on a hybrid of the random utility maximization and the random regret minimization (RURM) with two kinds of hybrid rules, namely, attribute level hybrid and decision level hybrid. The models are solved by the method of successive algorithm. Finally, the hybrid assignment models are applied to Beijing urban rail transit network for validation. The result shows that RRM and RUM make no significant difference for OD pairs with only two alternative routes. For those with more than two alternative routes, the performance of RRM and RUM is different. RRM is slightly better than RUM in some of the OD pairs, while for the other OD pairs, the results are opposite. Moreover, it shows that the crowd would only influence the regret value of OD pair with more commuters. We conclude that compared with RUM and RRM, the hybrid model RURM is more general.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Hanchuan Pan ◽  
Zhigang Liu ◽  
Hua Hu

By considering the difference between a car driver’s route choice behavior on the road and a passenger’s route choice behavior in urban rail transit (URT), this paper proposes an enhanced Dynamic User Optimal (DUO) passenger flow assignment model for metro networks. To capture realistic URT phenomena, the model has integrated the train operation disturbance constraint. Real passenger and train data are used to verify the proposed model and algorithm. The results indicate that the DUO-based model is more suitable for describing passenger route choice behavior under uncertain conditions compared to a static model. Moreover, this paper found that passengers under oversaturated conditions are more sensitive to train operation disturbances compared to undersaturated passengers.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Qian Li ◽  
Changxu Ji ◽  
Limin Jia ◽  
Yong Qin

In order to overcome the subjectivity of existing pedestrian route choice models, an alternative choice model is presented based on the utility equation. It is composed of several indirectly objective characteristic variables, including the height, length, and width of interlayer facilities; speed of automated facilities; and carry-on luggage. Considering the scene that pedestrians choose between the stairs or escalators, an extended binary logit model is developed. Calibration and validation of the model are accomplished by using the data collected in four typical passenger transfer stations in Beijing, China. The results show that the proposed model has an average accuracy of 86.56% in bidirection for predicting pedestrians’ behavior. An interesting phenomenon can be found that the length of facility has poorer impact than height on pedestrians’ route choice behavior. Some quantitative and irradiative conclusions have been illustrated on the relationship between the selection probability and the variables, which is expected to be valuable for extracting the implicit theoretical mechanism of passenger choice behavior.


Author(s):  
Hideki OKA ◽  
Makoto CHIKARAISHI ◽  
Jun TANABE ◽  
Daisuke FUKUDA ◽  
Takashi OGUCHI

1995 ◽  
Vol 22 (4-7) ◽  
pp. 119-147 ◽  
Author(s):  
P.D.V.G. Reddy ◽  
H. Yang ◽  
K.M. Vaughn ◽  
M.A. Abdel-Aty ◽  
R. Kitamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document