urban rail transit network
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 51)

H-INDEX

8
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fawen Gao ◽  
Zhibin Zhang ◽  
Mengxing Shang

As one of the core systems of a city, urban rail transit plays a pivotal role in ensuring the safe, rational, and efficient operation of the city. Therefore, it is of great significance to ensure the safe operation of urban rail transit network to improve the operation efficiency and economic level of the city. The prerequisite to ensure the safety of urban rail transit network is whether the risk situation of urban rail transit network can be reasonably and accurately evaluated. In order to evaluate the risk level of urban rail transit network reasonably and accurately, firstly, with full consideration of the characteristics of urban rail transit, the risk evaluation system of urban rail transit network was established in this paper based on the three levels of regional economy, social resources, and rail transit. Secondly, based on the entropy-TOPSIS-coupling coordination model, the single-factor influence and multifactor coupling influence in the index system are calculated and analyzed, respectively; thus the coupling coordination degree of urban rail transit system is obtained, so as to quantitatively evaluate and analyze the risk situation in urban rail transit network. Finally, based on the actual data of Shanghai from 2000 to 2016, the case simulation and analysis are carried out. The results show that the two indicators of regional economy and social resources are more likely to affect the safety state of urban rail transit. At the same time, the safety factor of urban rail transit coupling system is increasing year by year and gradually develops from disorder to order. This is more in line with current urban rail transit condition, demonstrating the rationality and accuracy of the entropy-TOPSIS-coupling coordination model proposed in this study.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Taoyuan Yang ◽  
Peng Zhao ◽  
Ke Qiao ◽  
Xiangming Yao ◽  
Tao Wang

The vulnerability of an urban rail transit (URT) network is an index that reflects its ability to cope with risks. However, existing URT network vulnerability studies have paid less attention to station track layout and passenger choice behavior, both of which significantly affect the consequences of a disruption incident. In the present study, we first analyze an actual scenario of URT section disruption and passenger behavior during an incident. Then, we propose two section vulnerability indexes that quantitatively evaluate the effect of a URT section disruption from two aspects: detour delay and loss in passenger flow. To make the application scenario of this method more realistic, the track layout and depot location are taken into account. By considering the relationship between train routing and the sections, a concept of “dominant section” is put forward to make the calculation of the vulnerability indexes more efficient and can be used for a simultaneous multi-section-disruption scenario. Finally, a case study of the Beijing Subway network is provided. The results show that disruptions in only a few critical sections can significantly affect the URT network passenger flow. Disruption of only 3% of the sections can lead to 80% passenger-flow loss, which reflects the high vulnerability of URT networks. The method proposed in this paper can provide support for the evaluation of URT network performance.


Author(s):  
Jinqu Chen ◽  
Jie Liu ◽  
Qiyuan Peng ◽  
Yong Yin

An urban rail transit (URT) system is an important component of an urban infrastructure system; however, it is vulnerable to disturbances, such as natural disasters and terrorist attacks. Constructing a highly resilient URT network has practical significance for enhancing its capability to respond to disturbances. In this paper, models are developed to optimize a URT network’s structure with regard to resilience and to enhance the resilience of a disrupted URT network. A bi-level programming model that aims to maximize a URT network’s global accessibility and global efficiency is formulated to optimize the structure of the network. A novel repair strategy, called the simulation repair strategy, is proposed to enhance the resilience of a disrupted URT network by optimizing the repair sequence of failed stations. The models are utilized to enhance the resilience of the Chengdu subway network. The result indicates that the bi-level programming model guides the construction of new links to optimize the structure of the Chengdu subway network. Deliberate attacks are more harmful to the Chengdu subway network than random attacks. The network’s operators need to pay attention to the operations of critical stations (e.g., Chunxi Road station and Tianfu Square station) to prevent disturbances from exerting considerable negative effects on the network’s normal operations. The simulation repair strategy exhibits higher repair efficiency than the conventional repair strategy, and it effectively enhances the resilience of the disrupted Chengdu subway network.


2021 ◽  
Vol 1948 (1) ◽  
pp. 012031
Author(s):  
Yao Shunyu ◽  
Zou Jinbai ◽  
Jiang Jiaming ◽  
Shen Zhukai

Sign in / Sign up

Export Citation Format

Share Document