transit assignment
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 3)

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Kai Lu ◽  
Nan Cao

Optimal strategy, one of the main transit assignment models, can better demonstrate the flexibility for passengers using routes in a transit network. According to the basic optimal strategy model, passengers can board trains based on their frequency without any capacity limitation. In the metropolitan cities such as Beijing, Shanghai, and Hong Kong, morning commuters face huge transit problems. Especially for the metro system, there is heavy rush in metro stations. Owing to the limited train capacity, some passengers cannot board the first coming train and need to wait for the next one. To better demonstrate the behavior of passengers pertaining to the limited train capacity, we consider capacity constraints for the basic optimal strategy model to represent the real situation. We have proposed a simulation-based algorithm to solve the model and apply it to the Beijing Subway to demonstrate the feasibility of the model. The application of the proposed approach has been demonstrated using the computational results for transit networks originating from practice.


Author(s):  
Markus Friedrich ◽  
Matthias Schmaus ◽  
Jonas Sauer ◽  
Tobias Zündorf

This paper investigates existing departure time models for a schedule-based transit assignment and their parametrization. It analyzes the impact of the temporal resolution of travel demand and suggests functions for evaluating the adaptation time as part of the utility of a path. The adaptation time quantifies the time between the preferred and the scheduled departure times. The findings of the analysis suggested that travel demand should be discretized into intervals of 1 min, with interval borders right between the full minute, that is, ±0.5 min. It was shown that longer time intervals led to arbitrary run volumes, even for origin–destination pairs with just one transit line and a fixed headway. Although a linear relationship between adaptation time and adaptation disutility is a common assumption in several publications, it cannot represent certain types of passenger behavior. For some trip purposes, passengers may be insensitive to small adaptation times, but highly sensitive to large adaptations. This requires a nonlinear evaluation function.


2021 ◽  
Vol 150 ◽  
pp. 121-142
Author(s):  
Hualing Ren ◽  
Yingjie Song ◽  
Jiancheng Long ◽  
Bingfeng Si

2021 ◽  
Vol 9 (1) ◽  
pp. 693-711
Author(s):  
Soumela Peftitsi ◽  
Erik Jenelius ◽  
Oded Cats

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wenjing Wang ◽  
Yihong Wang ◽  
Gonçalo Homem de Almeida Correia ◽  
Yusen Chen

In a multimodal public transport network, transfers are inevitable. Planning and managing an efficient transfer connection is thus important and requires an understanding of the factors that influence those transfers. Existing studies on predicting passenger transfer flows have mainly used transit assignment models based on route choice, which need extensive computation and underlying behavioral assumptions. Inspired by studies that use network properties to estimate public transport (PT) demand, this paper proposes to use the network properties of a multimodal PT system to explain transfer flows. A statistical model is estimated to identify the relationship between transfer flow and the network properties in a joint bus and metro network. Apart from transfer time, the number of stops, and bus lines, the most important network property we propose in this study is transfer accessibility. Transfer accessibility is a newly defined indicator for the geographic factors contributing to the possibility of transferring at a station, given its position in a multimodal PT network, based on an adapted gravity-based measure. It assumes that transfer accessibility at each station is proportional to the number of reachable points of interest within the network and dependent on a cost function describing the effect of distance. The R-squared of the regression model we propose is 0.69, based on the smart card data, PT network data, and Points of Interest (POIs) data from the city of Beijing, China. This suggests that the model could offer some decision support for PT planners especially when complex network assignment models are too computationally intensive to calibrate and use.


2020 ◽  
Vol 12 (3) ◽  
pp. 611-629
Author(s):  
Ouassim Manout ◽  
Patrick Bonnel ◽  
François Pacull

2020 ◽  
Vol 47 (8) ◽  
pp. 898-907 ◽  
Author(s):  
Islam Kamel ◽  
Amer Shalaby ◽  
Baher Abdulhai

Although the traffic and transit assignment processes are intertwined, the interactions between them are usually ignored in practice, especially for large-scale networks. In this paper, we build a simulation-based traffic and transit assignment model that preserves the interactions between the two assignment processes for the large-scale network of the Greater Toronto Area during the morning peak. This traffic assignment model is dynamic, user-equilibrium seeking, and includes surface transit routes. It utilizes the congested travel times, determined by the dynamic traffic assignment, rather than using predefined timetables. Unlike the static transit assignment models, the proposed transit model distinguishes between different intervals within the morning peak by using the accurate demand, transit schedule, and time-based road level-of-service. The traffic and transit assignment models are calibrated against actual field observations. The resulting dynamic model is suitable for testing different demand management strategies that impose dynamic changes on multiple modes simultaneously.


Sign in / Sign up

Export Citation Format

Share Document