Study of Topology and Control Strategy of the Novel Bi-Directional Lithium Battery Charger

2013 ◽  
Vol 397-400 ◽  
pp. 1178-1183
Author(s):  
Xi Kun Chen ◽  
Hui Feng Zhu

With the development of clean energy, lithium battery is paid more and more attention because of its outstanding energy storage characteristics .So the novel bi-directional lithium battery charger topology is presented in this paper and operating theory is analyzed clearly. It can make the energy bi-directional flow between the power grid and battery as needed. And it can also fully adapt to the lithium battery charging and discharging characteristics. Based on phase shifting control, the output voltage ripple and the inductor current ripple can be reduced in the condition of the same input and output, and the DC bus voltage can also be improved. This bi-directional lithium battery charger topology can be widely used in battery energy storage system.

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4601 ◽  
Author(s):  
Sirico ◽  
Teodorescu ◽  
Séra ◽  
Coppola ◽  
Guerriero ◽  
...  

In this paper, a photovoltaic (PV) module-level Cascaded H­Bridge (CHB) inverter with an integrated Battery Energy Storage System (BESS) is proposed. The advantages and drawbacks of the CHB circuit architecture in distributed PV generation systems are highlighted. The main benefits are related to the higher granularity of the PV power control, which mitigates mismatch effects, thus increasing the power harvesting. Nevertheless, heavy unbalanced configurations due to the intermittent nature of PV sources need to be properly addressed. In order to smooth the PV fluctuations, a Battery Energy Storage System is used to provide both an energy buffer and coordination of power supply and demand to obtain a flat profile of the output power. In particular, by exploiting the inherent modularity of the conversion circuit, a distributed storage system is also implemented by splitting the battery into smaller units each of which represents the backup module of a single power cell of the PV CHB. The proposed design and control strategy allows overcoming the operating limits of PV CHB inverter. Simulation results, carried out on a single­phase nineteen­level PV CHB inverter, evidence the effectiveness of the proposed design and control approach to minimize the adverse impact of deep mismatch conditions, thus enabling continuous power output by compensating PV power fluctuations.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5147
Author(s):  
Arkadiusz Adamczyk

Growing consciousness of the threat posed by man-made climate change has spurred government institutions, industry, and science to find clean fuels to power economic activity. Fuel cells powered by hydrogen are one of the steps in gaining clean energy. To improve the efficiency of the fuel cell, the hybrid solutions are required. This article shows a new approach to the design and control of a hybrid energy storage system for portable applications. The methodology allows us to optimize the desired physical parameters of the elements (weight or size) in order to withstand the connected load power demand. Such an approach allows us to minimize weight, which is essential in portable systems. The methodology was proven by building a technology demonstrator. The measurements of physical objects verified the electrical parameters received during simulation and allowed a lower weight of the system, compared to the system based only on Li-ion batteries.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1887 ◽  
Author(s):  
Jaber Abu Qahouq ◽  
Yuan Cao

This paper presents and evaluates a control scheme and a power electronics architecture for a Wirelessly Enabled and Distributed Battery Energy Storage (WEDES) system. It includes several independent battery modules (WEDES-MX modules) that transfer both power and information wirelessly to an On-Board Unit (OBU). Using wirelessly communicated State-Of-Charge (SOC) information from the WEDES-MX modules, the OBU part of the WEDES controller generates control commands and send them back to the WEDES-MX modules in order to control the amount of power/energy drawn from each WEDES-MX module and achieve SOC balancing. The presented controller also allows the WEDES system to maintain operation with a regulated bus voltage even if one or more WEDES-MX modules are removed or fail and under both balanced and unbalanced SOC conditions. The WEDES system with the presented WEDES controller when utilized in Electric Vehicle (EV) application, can allow for fast and safe exchange/swapping of WEDES-MX modules at an exchange station, home, or work and therefore potentially eliminating the range (mileage) anxiety issue that is associated with EVs’ range and the needed recharging time. The main objective of this paper is to present and evaluate the WEDES discharging controller for the WEDES system and present preliminary proof-of-concept scaled-down experimental prototype results.


2021 ◽  
Author(s):  
Irtaza Mohammad Syed

Renewable energy (RE) is one of the solutions to rising energy demands and growing environmental concerns. However, due to the intrinsic intermittency of RE resources, generated power is irregular and the supplied energy is intermittent. Intermittency renders RE systems non-dispatchable and can cause energy surplus and shortage. RE surplus can translate into curtailment and shortage can cause supply and demand issues. Curtailment wastes RE and supply and demand issues result in loss of load compromising service quality and system reliability. Battery energy storage system (BESS) is the widely accepted solution to mitigate the negative impacts of intermittency. However, this solution has relied on the conventional energy management and control (EMC) techniques that: 1) cause curtailment, 2) cause supply and demand issues, 3) cannot exploit BESS potential, 4) use RE passively (if and when available), and (5) are suitable only for readily dispatchable generation systems. This work proposes predictive EMC (PEMC) over conventional EMC (CEMC) to predictively perform EMC of RE systems (photovoltaic (PV) and wind) plus BESS (RE-BESS). PEMC predictively optimizes resources, makes control decisions and manages RE system operations based on the present and future (forecasted) load (or commitments) and RE potential over 24 hours horizon. PEMC 1) minimizes curtailment (maximize RE proportions), 2) minimizes supply and demand issues, 3) exploits BESS potential, 4) uses RE proactively (instead of operating on the mercy of weather), 5) compensates for forecast errors, and 6) maximizes savings (or revenue).


Sign in / Sign up

Export Citation Format

Share Document