An Improved Particle Swarm Optimization Algorithm

2013 ◽  
Vol 401-403 ◽  
pp. 1328-1335 ◽  
Author(s):  
Yu Feng Yu ◽  
Guo Li ◽  
Chen Xu

Particle swarm optimization (PSO) algorithm has the ability of global optimization , but it often suffers from premature convergence problem, especially in high-dimensional multimodal functions. In order to overcome the premature property and improve the global optimization performance of PSO algorithm, this paper proposes an improved particle swarm optimization algorithm , called IPSO. The simulation results of eight unimodal/multimodal benchmark functions demonstrate that IPSO is superior in enhancing the global convergence performance and avoiding the premature convergence problem to SPSO no matter on unimodal or multimodal high-dimensional (100 real-valued variables) functions.

2012 ◽  
Vol 532-533 ◽  
pp. 1429-1433
Author(s):  
Na Li ◽  
Yuan Xiang Li

A new particle swarm optimization algorithm (a diversity guided particles swarm Optimization), which is guided by population diversity, is proposed. In order to overcome the premature convergence of the algorithm, a metric to measure the swarm diversity is designed, the update of velocity and position of particles is controlled by this criteria, and the four sub-processes are introduced in the process of updating in order to increase the swarm diversity, which enhance to the ability of particle swarm optimization algorithm (PSO) to break away from the local optimum. The experimental results exhibit that the new algorithm not only has great advantage of global search capability, but also can avoid the premature convergence problem effectively.


2014 ◽  
Vol 599-601 ◽  
pp. 1453-1456
Author(s):  
Ju Wang ◽  
Yin Liu ◽  
Wei Juan Zhang ◽  
Kun Li

The reconstruction algorithm has a hot research in compressed sensing. Matching pursuit algorithm has a huge computational task, when particle swarm optimization has been put forth to find the best atom, but it due to the easy convergence to local minima, so the paper proposed a algorithm ,which based on improved particle swarm optimization. The algorithm referred above combines K-mean and particle swarm optimization algorithm. The algorithm not only effectively prevents the premature convergence, but also improves the K-mean’s local. These findings indicated that the algorithm overcomes premature convergence of particle swarm optimization, and improves the quality of image reconstruction.


2012 ◽  
Vol 182-183 ◽  
pp. 1953-1957
Author(s):  
Zhao Xia Wu ◽  
Shu Qiang Chen ◽  
Jun Wei Wang ◽  
Li Fu Wang

When the parameters were measured by using fiber Bragg grating (FBG) in practice, there were some parameters hard to measure, which would influenced the reflective spectral of FBG severely, and make the characteristic information harder to be extracted. Therefore, particle swarm optimization algorithm was proposed in analyzing the uniform force reflective spectral of FBG. Based on the uniform force sense theory of FBG and particle swarm optimization algorithm, the objective function were established, meanwhile the experiment and simulation were constructed. And the characteristic information in reflective spectrum of FBG was extracted. By using particle swarm optimization algorithm, experimental data showed that particle swarm optimization algorithm used in extracting the characteristic information not only was efficaciously and easily, but also had some advantages, such as high accuracy, stability and fast convergence rate. And it was useful in high precision measurement of FBG sensor.


2012 ◽  
Vol 512-515 ◽  
pp. 719-722
Author(s):  
Yan Ren ◽  
Yuan Zheng ◽  
Chong Li ◽  
Bing Zhou ◽  
Zhi Hao Mao

The hybrid wind/PV/pumped-storage power system was the hybrid system which combined hybrid wind/PV system and pumped-storage power station. System optimization was very important in the system design process. Particle swarm optimization algorithm was a stochastic global optimization algorithm with good convergence and high accuracy, so it was used to optimize the hybrid system in this paper. First, the system reliability model was established. Second, the particle swarm optimization algorithm was used to optimize the system model in Nanjing. Finally, The results were analyzed and discussed. The optimization results showed that the optimal design method of wind/PV/pumped-storage system based on particle swarm optimization could take into account both the local optimization and the global optimization, which has good convergence high precision. The optimal system was that LPSP (loss of power supply probability) was zero.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaofeng Lv ◽  
Deyun Zhou ◽  
Ling Ma ◽  
Yuyuan Zhang ◽  
Yongchuan Tang

The fault rate in equipment increases significantly along with the service life of the equipment, especially for multiple fault. Typically, the Bayesian theory is used to construct the model of faults, and intelligent algorithm is used to solve the model. Lagrangian relaxation algorithm can be adopted to solve multiple fault diagnosis models. But the mathematical derivation process may be complex, while the updating method for Lagrangian multiplier is limited and it may fall into a local optimal solution. The particle swarm optimization (PSO) algorithm is a global search algorithm. In this paper, an improved Lagrange-particle swarm optimization algorithm is proposed. The updating of the Lagrangian multipliers is with the PSO algorithm for global searching. The difference between the upper and lower bounds is proposed to construct the fitness function of PSO. The multiple fault diagnosis model can be solved by the improved Lagrange-particle swarm optimization algorithm. Experiment on a case study of sensor data-based multiple fault diagnosis verifies the effectiveness and robustness of the proposed method.


2013 ◽  
Vol 427-429 ◽  
pp. 1710-1713
Author(s):  
Xiang Tian ◽  
Yue Lin Gao

This paper introduces the principles and characteristics of Particle Swarm Optimization algorithm, and aims at the shortcoming of PSO algorithm, which is easily plunging into the local minimum, then we proposes a new improved adaptive hybrid particle swarm optimization algorithm. It adopts dynamically changing inertia weight and variable learning factors, which is based on the mechanism of natural selection. The numerical results of classical functions illustrate that this hybrid algorithm improves global searching ability and the success rate.


2014 ◽  
Vol 651-653 ◽  
pp. 2159-2163
Author(s):  
Jia Xing You ◽  
Ji Li Chen ◽  
Ming Gang Dong

To solve the problem of standard particle swarm optimization (PSO) easy turn to premature convergence and poor ability in local search, this paper present a hybrid particle swarm optimization algorithm merging simulated annealing (SA) and mountain-climb. During the running time, the algorithm use the pso to find the global optimal position quickly, take advantage of the Gaussian mutation and mountain-climb strategy to enhance local search ability, and combine with SA to strengthen the population diversity to enable particles to escape from local minima. Test results on several typical test functions show that this new algorithm has a significant improve in searching ability and effectively overcome the premature convergence problem.


2014 ◽  
Vol 1008-1009 ◽  
pp. 466-472
Author(s):  
Cheng Jun Xia ◽  
Yun Zhou ◽  
Hao Yu Huang

The chaos particle swarm optimization algorithm was presented to solving optimal power flow. The proposed OPF considers the total cost of generators as the objective functions. To enhance the performance of algorithm, a premature convergence strategy was proposed. The strategy can be divided into two parts. In the first part, a method is introduced to judge premature convergence, while another part provides an advance method to improve the performance of algorithm with searching the solution in total feasible region. The control strategy used to prevent premature convergence will obtain starting values for initial particle before program iterating, so it can provide bitter probability of detecting global optimum solution. The simulation results on standard IEEE 30-bus system minimizing fuel cost of generator show the effectiveness of the chaos particle swarm optimization algorithm, and can obtain a good solution.


Sign in / Sign up

Export Citation Format

Share Document