The Research on Check Calculation of Pipe Supports in Nuclear Power Plant

2013 ◽  
Vol 419 ◽  
pp. 784-789
Author(s):  
Hong Lin Liu ◽  
Yan Pu Wang

Pipe supports are an important part of the technology system pipeline in nuclear power plant. This paper takes pipe supports of LING AO II nuclear power plant (M310 reactor) as the object, the strength, stiffness calculation of assembly parts in several commonly used pipe support, and the rooting point validation are studied.

Author(s):  
Li Nan ◽  
Lao Yi ◽  
Che Yinhui

When inspecting in the nuclear power plant, the bolt of the 001/004 pump in Essential Service Water system was found fracture. The bolt in 001 pump had ever fractured before, and it had been replaced. In this paper, the material, microstructure, energy dispersive spectrometry and mechanical check calculation of the bolt are analyzed. The result shows, the bolt breakage is for stress corrosion cracking, the corrosion element is Cl−. When the martensitic stainless steel is in the heat treatment, the temperature is improper control, which causing the Cr element distribution changed. So the ability of material to resist corrosion becomes poor which is the root cause of the bolt fracture.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


Sign in / Sign up

Export Citation Format

Share Document