A Study on Safety Culture Compliance in Nuclear Power Plant Organization

2019 ◽  
Vol 20 (3) ◽  
pp. 49-74
Author(s):  
Inyoung Hwang ◽  
J. Hun Park
Author(s):  
Vasilij V. Begun ◽  
Sergij V. Begun ◽  
Olena O. Kilina

The necessity of safety analysis methods and probable scenarios of accidents teaching in the education of experts for nuclear industry in Ukraine has been realised only after the Chernobyl accident. We developed the content of the first educational course in probabilistic safety analysis in 1995 based on the experience of the countries having developed nuclear power, the USA first of all, and on the training course of the Idaho National Laboratory. After this in 1996 the new course in probabilistic safety analysis of nuclear power plant (NPP) was adopted at our university. The new educational course in safety for students was developed and adopted in 2009 educational year - “Safety culture at nuclear installations of Ukraine”. Education and training in safety culture in higher educational institutions and in the nuclear power plants is a part of the general modern process of maintenance of safety, it is recommended by IAEA standards. The principles of safety culture are taken as a basis of the modern concept of safety of nuclear power plants. This work has received a positive appreciation from the management of departments of safety and training of the personnel of operating organization National Nuclear Energy Generating Company Energoatom (NNEGC Energoatom) and from other leaders of nuclear industry. The content of this educational course was discussed at the international scientific conferences on safety culture in 2008 and 2010, and was preliminary printed in the professional journal «Nuclear and radiation safety». The purposes of education have been defined as a survey, generalizing course on safety of the NPP with an allocation of safety issues on the foreground. Practical questions of the equipment and NPP systems work, their interaction in emergencies and the role of the human-operator are studied. The procedure of failure analysis at NPP is studied. Students analyze equipment work, root and direct causes of incidents. Methods of estimation of safety conditions based on observable operational indicators are studied. Parameters, variables and indicators of safety culture are studied. As a result of gained experience we have come to the conclusion about high advisability of educational courses in safety for students. Specially formed knowledge and education in the field of safety from a student’s bench are the basis of safety culture of the future nuclear industry expert.


Author(s):  
Sunil Nijhawan

The official report of The Fukushima Nuclear Accident Independent Investigation Commission concluded that “The TEPCO Fukushima Nuclear Power Plant accident was the result of collusion between the government, the regulators and TEPCO, and the lack of governance by said parties. They effectively betrayed the nation’s right to be safe from nuclear accidents. Therefore, we conclude that the accident was clearly ‘manmade.’ We believe that the root causes were the organizational and regulatory systems that supported faulty rationales for decisions and actions, rather than issues relating to the competency of any specific individual.” This wakeup call for the nuclear power utilities should require a public review of their relationship with of regulators. However, severe accident related risk reduction is a relatively uncharted territory and given the apparent lack of in-house technical expertise, the regulators are heavily relying on the qualitative and ‘hand waving’ arguments being presented by the utilities inherently disinterested in further investments they are not required to make under original license conditions. As a result, it has accelerated further deterioration of the safety culture and emboldened many within the regulatory staff to undertake or support otherwise questionable decisions in support of the utilities that prefer status quo. Case in point is the Canadian Nuclear Safety Commission (CNSC) which mostly accepts any and all requests by the nuclear power industry. After Fukushima, the CNSC took a year to publish a set of ‘Action Items’ for the Canadian Nuclear industry to prepare plans over 3 years and then accepted most if not all submissions that in many cases barely addressed the already watered down recommendations. In some cases the solutions proposed by the industry were economically expedient but technically flawed; and some could even be considered dangerous. CNSC also published a study on consequences of a severe accident with a source term that was limited to the desirable safety goal (100 TBq of Cs-137), which coincidently years later matched the utility ‘calculations’, but orders of magnitude smaller than predicted by independent evaluations. As a result, some well publicized conclusions on the benign nature of consequences of a CANDU severe accident were made and the local and provincial agencies that actually are supposed to prepare off-site emergency measures were left with an incorrect picture of what havoc a severe accident can cause otherwise. CNSC then published a much publicized video highlighting the available operator actions to terminate the accident early and later a report outlining the accident progression for a severe accident without operator action with conclusions that were immediately technically suspect from a variety of aspects. The aim was to claim that a severe core damage accident has no unfavorable off-site consequences. The regulator effectively, in this case, comes across as a promoter for the industry it is legislated to regulate. The paper outlines examples of actions being taken by the regulators that hinder development of effective risk reduction measures by the industry which otherwise would be forced to undertake them if the regulators had not stepped on the plate to bat for them. They vary from letters to editors to silence any safety concerns raised by the public, muzzling of its own staff, trying to silence external specialists who question their wisdom on to blatant disregard for any intervention by public they are required to entertain by law but are accustomed to factually ignore or belittle. The paper also outlines a number of examples of actions that an independent regulator would undertake to reduce the risk and enhance the safety culture. The nuclear regulatory regimes work well generally but in cases where it does not, the results can be disastrous as evident from the events in Japan and as is building up in Canada. The paper also summarizes the disparities between the number of Regulatory Actions instituted by the CNSC against small companies that use nuclear substances for industrial applications and almost none actions against the nuclear power plant utilities it regularly grants a pass in spite of the larger risk their operations pose to public.


Author(s):  
Qiu Li ◽  
Jun Wu

Design plays a leading role in the whole life cycle of nuclear power production, including site selection, design, manufacture, construction, operation and decommission. The quality of the design products directly affects the intrinsic safety of the nuclear power plant. The quality of final products in design process depends on a number of factors, including not only technology capability, but also the improvement of design quality assurance system, the capability and responsibility of the designers to nuclear safety, the thinking mode and working habit of the designers, and the extent of complete implementation of the review systems at all levels. These factors consequently affect the level of safety of the nuclear power plant. Nuclear power design industry is typical knowledge-intensive business, in which knowledge workers consist of essential assets to the enterprise. The article analyzes the asset structure and staff structure of nuclear power design industries in contrast with other industries, and discusses the contribution of knowledge workers to the development of the enterprise. This paper also tries to document the characteristics of knowledge workers in nuclear power enterprises. They are characteristic of superior income and welfare, high level education and ability, high specialization, and tacit knowledge. Based on these analyses, the article addresses four major principles in nuclear safety culture construction for nuclear power design enterprises as follows: 1. adopt motivation factors as major incentives, 2. emphasize self management, 3. management by objectives (MBO), 4. team work.


Sign in / Sign up

Export Citation Format

Share Document