earthquake response
Recently Published Documents


TOTAL DOCUMENTS

1026
(FIVE YEARS 104)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
S. P. Kotecha

Damping performs essential function in format of earthquake resistant structures, which lower the change of the shape when they are subjected to lateral loads or earthquake. In the existing study fluid viscous dampers (FVD) are used to consider the response of RCC buildings on sloping ground. The important challenge of a structure is to endure the lateral loads and switch them to the foundation and to control the story displacement. In order to make structure earthquake resistant, (FVD) have been used. The building is modeled in ETAB 2018 and modeled with different location of FVD. After the study results show building with fluid viscous dampers (FVD) at diagonal bracing shows better performance.


2021 ◽  
Vol 7 ◽  
Author(s):  
Yutaka Nakamura ◽  
Hinako Fujii

Timber frame structures are common traditional methods of housing construction, which use squared-off timber beams, columns, and walls as lateral load-bearing members. The seismic performance of timber frame houses can be secured by the load-bearing capacity of erected braces and walls; however, past major earthquakes have caused severe damage to earthquake-resistant timber frame houses. This study investigates the effect of small-size fluid dampers on the earthquake damage reduction in a timber frame house through earthquake response analyses. A detailed analytical model was generated based on an actual two-story timber frame house, which was designed for the highest seismic grade using the latest Japanese standards. Time-history response analyses were carried out for the analytical model subjected to the 2016 Kumamoto earthquake with and without small-size fluid dampers. The small-size fluid damper is equipped with a relief mechanism for the damping force, and its damping property can be expressed using the Maxwell model. Four or seven fluid dampers were installed in the first story of the model to investigate their effect on the earthquake damage reduction. The results of the earthquake response analyses show that the four and seven fluid dampers can reduce the maximum first-story drift angle by approximately one-third and half, respectively. The dampers suppress the residual deformation, control the elongation of the fundamental period during the response, and restrain the amplitude growth. A small-size fluid damper has an equivalent quake resistance to a conventional structural wall with a wall ratio of 3 plus.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012039
Author(s):  
Avinash Kalamkar ◽  
N.H. Pitale ◽  
P.B. Patil

Abstract The use of multiple tuned mass dampers (MTMDs) to monitor earthquake response of tall buildings is investigated. The MTMDs are located in three locations in the reinforced concrete (RC) structures. The time domain seismic analysis is performed on Etabs Software using imperial Earth movement used to analyze contemporary history. The performance of the MTMDs is compared to that of a TMD on the top floor, a TMD on the third and fifth floors, a TMD on each floor, and no TMD. The base shear vs time and displacement parameters were examined, and it was determined that the MTMDs on each floor are better for the building’s seismic response. Furthermore, it has been discovered that MTMDs are more powerful than STMDs.


2021 ◽  
Vol 21 (11) ◽  
pp. 04021223
Author(s):  
Abdelkader Dram ◽  
Umashankar Balunaini ◽  
Sadok Benmebarek ◽  
Sasanka Mouli Sravanam ◽  
Madhira R. Madhav

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Baran Bozyigit

PurposeThis study aims to obtain earthquake responses of linear-elastic multi-span arch-frames by using exact curved beam formulations. For this purpose, the dynamic stiffness method (DSM) which uses exact mode shapes is applied to a three-span arch-frame considering axial extensibility, shear deformation and rotational inertia for both columns and curved beams. Using exact free vibration properties obtained from the DSM approach, the arch-frame model is simplified into an equivalent single degree of freedom (SDOF) system to perform earthquake response analysis.Design/methodology/approachThe dynamic stiffness formulations of curved beams for free vibrations are validated by using the experimental data in the literature. The free vibrations of the arch-frame model are investigated for various span lengths, opening angle and column dimensions to observe their effects on the dynamic behaviour. The calculated natural frequencies via the DSM are presented in comparison with the results of the finite element method (FEM). The mode shapes are presented. The earthquake responses are calculated from the modal equation by using Runge-Kutta algorithm.FindingsThe displacement, base shear, acceleration and internal force time-histories that are obtained from the proposed approach are compared to the results of the finite element approach where a very good agreement is observed. For various span length, opening angle and column dimension values, the displacement and base shear time-histories of the arch-frame are presented. The results show that the proposed approach can be used as an effective tool to calculate earthquake responses of frame structures having curved beam elements.Originality/valueThe earthquake response of arch-frames consisting of curved beams and straight columns using exact formulations is obtained for the first time according to the best of the author’s knowledge. The DSM, which uses exact mode shapes and provides accurate free vibration analysis results considering each structural members as one element, is applied. The complicated structural system is simplified into an equivalent SDOF system using exact mode shapes obtained from the DSM and earthquake responses are calculated by solving the modal equation. The proposed approach is an important alternative to classical FEM for earthquake response analysis of frame structures having curved members.


Author(s):  
Xiang Wang ◽  
Eric Lo ◽  
Luca De Vivo ◽  
Tara C. Hutchinson ◽  
Falko Kuester

Sign in / Sign up

Export Citation Format

Share Document