Space-Time Chebyshev Pseudospectral Method for Burgers Equation

2013 ◽  
Vol 475-476 ◽  
pp. 1075-1078
Author(s):  
Jia Chun Liu ◽  
Xiao Hui Qian

In this paper, we present a new method for solving of the one dimensional Burgers equation, that is the space-time Chebyshev pseudospectral method. Firstly, we discretize the Burgers equation in one dimensional space with Chebyshev pseudospectral method. Finally, numerical results obtained by this way are compared with the exact solution to show the efficiency of the method. The numerical results demonstrate high accuracy and stability of this method.

2014 ◽  
Vol 556-562 ◽  
pp. 3856-3859
Author(s):  
Jun Zhang

In this paper we use elastic-plastic mechanics and air dynamic to establish the mathematical model of badminton flight trajectory and deformation, and use the ANSYS software to do simulation on badminton flight process, and obtain the flight path and deformation of badminton. In order to analyze the badminton four-dimensional space-time data, we establish the one-dimensional time measurement, and use one-dimensional time transient stress to establish flight trajectory and deformation, and design the four-dimensional space-time steady-state simulation process. Through calculation we eventually get the force of badminton flight process and deformation nephogram. Comparing four times results of numerical simulation results, the mathematical model of this design model meets the design requirements. It provides technical reference for badminton athlete's training and teaching.


2003 ◽  
Vol 2003 (43) ◽  
pp. 2735-2746 ◽  
Author(s):  
Ekaterina T. Kolkovska

We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.


2009 ◽  
Vol 50 (3) ◽  
pp. 407-420
Author(s):  
ROGER YOUNG

AbstractAn analytic solution is developed for the one-dimensional dissipational slip gradient equation first described by Gurtin [“On the plasticity of single crystals: free energy, microforces, plastic strain-gradients”, J. Mech. Phys. Solids48 (2000) 989–1036] and then investigated numerically by Anand et al. [“A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results”, J. Mech. Phys. Solids53 (2005) 1798–1826]. However we find that the analytic solution is incompatible with the zero-sliprate boundary condition (“clamped boundary condition”) postulated by these authors, and is in fact excluded by the theory. As a consequence the analytic solution agrees with the numerical results except near the boundary. The equation also admits a series of higher mode solutions where the numerical result corresponds to (a particular case of) the fundamental mode. Anand et al. also established that the one-dimensional dissipational gradients strengthen the material, but this proposition only holds if zero-sliprate boundary conditions can be imposed, which we have shown cannot be done. Hence the possibility remains open that dissipational gradient weakening may also occur.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jae-Young Choi ◽  
Dong Kyun Im ◽  
Jangho Park ◽  
Seongim Choi

A mapped Chebyshev pseudospectral method is extended to solve three-dimensional unsteady flow problems. As the classical Chebyshev spectral approach can lead to numerical instabilities due to ill conditioning of the spectral matrix, the Chebyshev points are evenly redistributed over the domain by an inverse sine mapping function. The mapped Chebyshev pseudospectral method can be used as an alternative time-spectral approach that uses a Chebyshev collocation operator to approximate the time derivative terms in the unsteady flow governing equations, and the method can make general applications to both nonperiodic and periodic problems. In this study, the mapped Chebyshev pseudospectral method is employed to solve three-dimensional periodic problem to verify the spectral accuracy and computational efficiency with those of the Fourier pseudospectral method and the time-accurate method. The results show a good agreement with both of the Fourier pseudospectral method and the time-accurate method. The flow solutions also demonstrate a good agreement with the experimental data. Similar to the Fourier pseudospectral method, the mapped Chebyshev pseudospectral method approximates the unsteady flow solutions with a precise accuracy at a considerably effective computational cost compared to the conventional time-accurate method.


2000 ◽  
Vol 417 ◽  
pp. 323-349 ◽  
Author(s):  
L. FRACHEBOURG ◽  
Ph. A. MARTIN

The one-dimensional Burgers equation in the inviscid limit with white noise initial condition is revisited. The one- and two-point distributions of the Burgers field as well as the related distributions of shocks are obtained in closed analytical forms. In particular, the large distance behaviour of spatial correlations of the field is determined. Since higher-order distributions factorize in terms of the one- and two- point functions, our analysis provides an explicit and complete statistical description of this problem.


Sign in / Sign up

Export Citation Format

Share Document