carbon radicals
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 31)

H-INDEX

32
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7719
Author(s):  
Ira Litvak ◽  
Avner Cahana ◽  
Yaakov Anker ◽  
Sharon Ruthstein ◽  
Haim Cohen

Diamonds contain carbon paramagnetic centers (stable carbon radicals) in small concentrations (at the level of ~1 × 1012 spins/mg) that can help in elucidating the structure of the nitrogen atoms’ contaminants in the diamond crystal. All diamonds that undergo polishing are exposed to high temperatures, owing to the friction force during the polishing process, which may affect the carbon-centered radicals’ concentration and structure. The temperature is increased appreciably; consequently, the black body radiation in the visible range turns orange. During polishing, diamonds emit an orange light (at a wavelength of about 600 nm) that is typical of a black body temperature of 900 °C or higher. Other processes in which color-enhanced diamonds are exposed to high temperatures are thermal treatments or the high-pressure, high-temperature (HPHT) process in which the brown color (resulting from plastic deformation) is bleached. The aim of the study was to examine how thermal treatment and polishing influence the paramagnetic centers in the diamond. For this purpose, four rough diamonds were studied: two underwent a polishing process, and the other two were thermally treated at 650 °C and 1000 °C. The diamonds were analyzed pre- and post-treatment by EPR (Electron Paramagnetic resonance), FTIR (Fourier transform infrared, fluorescence, and their visual appearance. The results indicate that the polishing process results in much more than just thermal heating the paramagnetic centers.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6781
Author(s):  
Kazuki Matsuo ◽  
Tadashi Yoshitake ◽  
Eiji Yamaguchi ◽  
Akichika Itoh

We have developed a photochemical ATRA/ATRC reaction that is mediated by halogen bonding interactions. This reaction is caused by the reaction of malonic acid ester derivatives containing bromine or iodine with unsaturated compounds such as alkenes and alkynes in the presence of diisopropylethylamine under visible light irradiation. As a result of various control experiments, it was found that the formation of complexes between amines and halogens by halogen-bonding interaction occurs in the reaction system, followed by the cleavage of the carbon–halogen bonds by visible light, resulting in the formation of carbon radicals. In this reaction, a variety of substrates can be used, and the products, cyclopentenes and cyclopentanes, were obtained by intermolecular addition and intramolecular cyclization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guang-Mei Cao ◽  
Xin-Long Hu ◽  
Li-Li Liao ◽  
Si-Shun Yan ◽  
Lei Song ◽  
...  

AbstractPhotoredox-mediated umpolung strategy provides an alternative pattern for functionalization of carbonyl compounds. However, general approaches towards carboxylation of carbonyl compounds with CO2 remain scarce. Herein, we report a strategy for visible-light photoredox-catalyzed umpolung carboxylation of diverse carbonyl compounds with CO2 by using Lewis acidic chlorosilanes as activating/protecting groups. This strategy is general and practical to generate valuable α-hydroxycarboxylic acids. It works well for challenging alkyl aryl ketones and aryl aldehydes, as well as for α-ketoamides and α-ketoesters, the latter two of which have never been successfully applied in umpolung carboxylations with CO2 (to the best of our knowledge). This reaction features high selectivity, broad substrate scope, good functional group tolerance, mild reaction conditions and facile derivations of products to bioactive compounds, including oxypheonium, mepenzolate bromide, benactyzine, and tiotropium. Moreover, the formation of carbon radicals and carbanions as well as the key role of chlorosilanes are supported by control experiments.


2021 ◽  
Author(s):  
Petru Spataru

Abstract The braking effect of the ammonium derivatives on the natural aquatic environment varies dramatically with the number and nature of organic radical substitutions at nitrogen atom, particularly with their structure, composition and genesis. The most common discrepancy in their toxic effect are showing the natural and synthetic amines. For instance, the values of the maximum allowable concentration (MAC) of the derivatives of the natural origin for drinking water exceed the MAC of the synthetic ones by two orders. On the other hand, it has been found out that 1- naphtylamine (1-NA) inhibitory effect is associated to its toxicity. The Diethylamine (DEA) braking impact on the nitrification process is effectively lower than that of the toxicity. Our experiments show that the carbon-radicals of organic amines act as reducing agents. It is found that DEA decomposition leads to a high NH4+ ions (approx. 3.8 mg/L ammonium nitrogen) concentration in river water samples. By laboratory simulations two types of fixations by microbial organisms have been established: 1) absorption-desorption, the hydromicrobiotic reaction to ammonium (HMBRA) at the instantaneous increase of the concentration of ammonium ion in the river water (so-called shock/stress effect); 2) nitrogen fixation stimulated by a certain concentration (0.05mg/L) of a 1-NA and other amines.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhaoliang Yang ◽  
Yunhong Niu ◽  
Xiaoqian He ◽  
Suo Chen ◽  
Shanshan Liu ◽  
...  

AbstractControlling the reactivity of reactive intermediates is essential to achieve selective transformations. Due to the facile 1,5-hydrogen atom transfer (HAT), alkoxyl radicals have been proven to be important synthetic intermediates for the δ-functionalization of alcohols. Herein, we disclose a strategy to inhibit 1,5-HAT by introducing a silyl group into the α-position of alkoxyl radicals. The efficient radical 1,2-silyl transfer (SiT) allows us to make various α-functionalized products from alcohol substrates. Compared with the direct generation of α-carbon radicals from oxidation of α-C-H bond of alcohols, the 1,2-SiT strategy distinguishes itself by the generation of alkoxyl radicals, the tolerance of many functional groups, such as intramolecular hydroxyl groups and C-H bonds next to oxygen atoms, and the use of silyl alcohols as limiting reagents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng-Zi Wang ◽  
Yuan Gao ◽  
Jun Chen ◽  
Xiao-Die Huan ◽  
Wen-Jing Xiao ◽  
...  

AbstractThe intermolecular three-component alkene vicinal dicarbofunctionalization (DCF) reaction allows installation of two different carbon fragments. Despite extensive investigation into its ionic chemistry, the enantioseletive radical-mediated versions of DCF reactions remain largely unexplored. Herein, we report an intermolecular, enantioselective three-component radical vicinal dicarbofunctionalization reaction of olefins enabled by merger of radical addition and cross-coupling using photoredox and copper dual catalysis. Key to the success of this protocol relies on chemoselective addition of acyl and cyanoalkyl radicals, generated in situ from the redox-active oxime esters by a photocatalytic N-centered iminyl radical-triggered C-C bond cleavage event, onto the alkenes to form new carbon radicals. Single electron metalation of such newly formed carbon radicals to TMSCN-derived L1Cu(II)(CN)2 complex leads to asymmetric cross-coupling. This three-component process proceeds under mild conditions, and tolerates a diverse range of functionalities and synthetic handles, leading to valuable optically active β–cyano ketones and alkyldinitriles, respectively, in a highly enantioselective manner (>60 examples, up to 97% ee).


Synlett ◽  
2021 ◽  
Author(s):  
Xiaobo Pang ◽  
Xing-Zhong shu

The dehydroxylative functionalization of alcohols is synthetic appealing, but it remains a long-term challenge in the synthetic community. Low-valent titanium has shown the power to produce carbon radicals from alcohols via homolytic cleavage of the C−OH bonds and thus offers the potential to overcome this problem. In this perspective manuscript, we summarized the recent advance on radical dehydroxylative transformation of alcohols either promoted or catalyzed by titanium. The limitation and outlook of the studies in this field are also provided. 1 Introduction 2 Recent Developments in Dehydroxylative Functionalization of Alcohols 3 Summary and Outlook


Sign in / Sign up

Export Citation Format

Share Document