Study on RFID Authentication Technology Based on Public-Key Algorithms and HASH Function

2014 ◽  
Vol 530-531 ◽  
pp. 756-759
Author(s):  
Chang Quan Wang

As an advanced information recognition and data capture techniques,RFID are widely used in many areas. However, due to the RFID tag works and cost constraints, information security through wireless channel is threatened. Through analyzing the security risks and existing defect of the RFID authentication protocol,this paper proposes a new RFID authentication scheme combined public key encryption algorithm and hash function. Analysis result shows that it has higher security and the smaller resources consumption in achieving.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256372
Author(s):  
Shaofen Xie ◽  
Wang Yao ◽  
Faguo Wu ◽  
Zhiming Zheng

Lattice-based non-interactive zero-knowledge proof has been widely used in one-way communication and can be effectively applied to resist quantum attacks. However, lattice-based non-interactive zero-knowledge proof schemes have long faced and paid more attention to some efficiency issues, such as proof size and verification time. In this paper, we propose the non-interactive zero-knowledge proof schemes from RLWE-based key exchange by making use of the Hash function and public-key encryption. We then show how to apply the proposed schemes to achieve the fixed proof size and rapid public verification. Compared with previous approaches, our schemes can realize better effectiveness in proof size and verification time. In addition, the proposed schemes are secure from completeness, soundness, and zero-knowledge.


Informatica ◽  
2012 ◽  
Vol 23 (4) ◽  
pp. 537-562 ◽  
Author(s):  
Ting-Yi Chang ◽  
Min-Shiang Hwang ◽  
Wei-Pang Yang

Author(s):  
Ai ISHIDA ◽  
Keita EMURA ◽  
Goichiro HANAOKA ◽  
Yusuke SAKAI ◽  
Keisuke TANAKA

2009 ◽  
Vol 20 (10) ◽  
pp. 2907-2914 ◽  
Author(s):  
Liao-Jun PANG ◽  
Hui-Xian LI ◽  
Li-Cheng JIAO ◽  
Yu-Min WANG

Author(s):  
Keith M. Martin

In this chapter, we introduce public-key encryption. We first consider the motivation behind the concept of public-key cryptography and introduce the hard problems on which popular public-key encryption schemes are based. We then discuss two of the best-known public-key cryptosystems, RSA and ElGamal. For each of these public-key cryptosystems, we discuss how to set up key pairs and perform basic encryption and decryption. We also identify the basis for security for each of these cryptosystems. We then compare RSA, ElGamal, and elliptic-curve variants of ElGamal from the perspectives of performance and security. Finally, we look at how public-key encryption is used in practice, focusing on the popular use of hybrid encryption.


Sign in / Sign up

Export Citation Format

Share Document