scholarly journals Non-interactive zero-knowledge proof scheme from RLWE-based key exchange

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256372
Author(s):  
Shaofen Xie ◽  
Wang Yao ◽  
Faguo Wu ◽  
Zhiming Zheng

Lattice-based non-interactive zero-knowledge proof has been widely used in one-way communication and can be effectively applied to resist quantum attacks. However, lattice-based non-interactive zero-knowledge proof schemes have long faced and paid more attention to some efficiency issues, such as proof size and verification time. In this paper, we propose the non-interactive zero-knowledge proof schemes from RLWE-based key exchange by making use of the Hash function and public-key encryption. We then show how to apply the proposed schemes to achieve the fixed proof size and rapid public verification. Compared with previous approaches, our schemes can realize better effectiveness in proof size and verification time. In addition, the proposed schemes are secure from completeness, soundness, and zero-knowledge.

2012 ◽  
Vol 546-547 ◽  
pp. 526-530
Author(s):  
Qian Zhang ◽  
De Han

In this paper, through introducing the Williams public-key cryptosystem in detail, the analysis of the characteristics of the system, and the combination with zero knowledge proof, we set up a zero-knowledge proof scheme based on Williams public-key cryptosystem. The scheme will enrich the theory of cryptography, and particularly zero-knowledge proof theory.


2014 ◽  
Vol 530-531 ◽  
pp. 756-759
Author(s):  
Chang Quan Wang

As an advanced information recognition and data capture techniques,RFID are widely used in many areas. However, due to the RFID tag works and cost constraints, information security through wireless channel is threatened. Through analyzing the security risks and existing defect of the RFID authentication protocol,this paper proposes a new RFID authentication scheme combined public key encryption algorithm and hash function. Analysis result shows that it has higher security and the smaller resources consumption in achieving.


Author(s):  
NIVEDITA DATTA

In many applications, the password is sent as cleartext to the server to be authenticated thus providing the eavesdropper with opportunity to steal valuable data. This paper presents a simple protocol based on zero knowledge proof by which the user can prove to the authentication server that he has the password without having to send the password to the server as either cleartext or in encrypted format. Thus the user can authenticate himself without having to actually reveal the password to the server. Also, another version of this protocol has been proposed which makes use of public key cryptography thus adding one more level of security to the protocol and enabling mutual authentication between the client & server.


2015 ◽  
Vol 111 (13) ◽  
pp. 5-9 ◽  
Author(s):  
Zubair Iqbal ◽  
Kamal Kr. Gola ◽  
Bhumika Gupta ◽  
Manisha Kandpal

Author(s):  
Diego F. Aranha ◽  
Sebastian Berndt ◽  
Thomas Eisenbarth ◽  
Okan Seker ◽  
Akira Takahashi ◽  
...  

We study masking countermeasures for side-channel attacks against signature schemes constructed from the MPC-in-the-head paradigm, specifically when the MPC protocol uses preprocessing. This class of signature schemes includes Picnic, an alternate candidate in the third round of the NIST post-quantum standardization project. The only previously known approach to masking MPC-in-the-head signatures suffers from interoperability issues and increased signature sizes. Further, we present a new attack to demonstrate that known countermeasures are not sufficient when the MPC protocol uses a preprocessing phase, as in Picnic3.We overcome these challenges by showing how to mask the underlying zero-knowledge proof system due to Katz–Kolesnikov–Wang (CCS 2018) for any masking order, and by formally proving that our approach meets the standard security notions of non-interference for masking countermeasures. As a case study, we apply our masking technique to Picnic. We then implement different masked versions of Picnic signing providing first order protection for the ARM Cortex M4 platform, and quantify the overhead of these different masking approaches. We carefully analyze the side-channel risk of hashing operations, and give optimizations that reduce the CPU cost of protecting hashing in Picnic by a factor of five. The performance penalties of the masking countermeasures ranged from 1.8 to 5.5, depending on the degree of masking applied to hash function invocations.


2021 ◽  
Vol 2022 (1) ◽  
pp. 544-564
Author(s):  
Shihui Fu ◽  
Guang Gong

Abstract We present a new zero-knowledge succinct argument of knowledge (zkSNARK) scheme for Rank-1 Constraint Satisfaction (RICS), a widely deployed NP-complete language that generalizes arithmetic circuit satisfiability. By instantiating with different commitment schemes, we obtain several zkSNARKs where the verifier’s costs and the proof size range from O(log2 N) to O ( N ) O\left( {\sqrt N } \right) depending on the underlying polynomial commitment schemes when applied to an N-gate arithmetic circuit. All these schemes do not require a trusted setup. It is plausibly post-quantum secure when instantiated with a secure collision-resistant hash function. We report on experiments for evaluating the performance of our proposed system. For instance, for verifying a SHA-256 preimage (less than 23k AND gates) in zero-knowledge with 128 bits security, the proof size is less than 150kB and the verification time is less than 11ms, both competitive to existing systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xudong Deng ◽  
Chengliang Tian ◽  
Fei Chen ◽  
Hequn Xian

Most of the existing identity management is the centralized architecture that has to validate, certify, and manage identity in a centralized approach by trusted authorities. Decentralized identity is causing widespread public concern because it enables to give back control of identity to clients, and the client then has the ability to control when, where, and with whom they share their credentials. A decentralized solution atop on blockchain will bypass the centralized architecture and address the single point of the failure problem. To our knowledge, blockchain is an inherited pseudonym but it cannot achieve anonymity and auditability directly. In this paper, we approach the problem of decentralized identity management starting from the designated-verifier anonymous credential (DVAC in short). DVAC would assist to build a new practical decentralized identity management with anonymity and auditability. Apart from the advantages of the conventional anonymous credential, the main advantage of the proposed DVAC atop blockchain is that the issued cryptographic token will be divided into shares at the issue phase and will be combined at the showing credential phase. Further, the smooth projective hash function ( SPHF in short) is regarded as a designated-verifier zero-knowledge proof system. Thus, we introduce the SPHF to achieve the designated verifiability without compromising the privacy of clients. Finally, the security of the proposed DVAC is proved along with theoretical and experimental evaluations.


Sign in / Sign up

Export Citation Format

Share Document