A SSDF-Attack-Exclusion Cooperative Spectrum Sensing Scheme in Cognitive Radio Networks

2014 ◽  
Vol 556-562 ◽  
pp. 5219-5222
Author(s):  
Wei Wu ◽  
Xiao Fei Zhang ◽  
Xiao Ming Chen

Compared with the single user spectrum sensing, cooperative spectrum sensing is a promising way to improve the detection precision. However, cooperative spectrum sensing is vulnerable to a variety of attacks, such as the spectrum sensing data falsification attack (SSDF attack). In this paper, we propose a concise cooperative spectrum sensing scheme based on a reliability threshold. We analyze the utility function of SSDF attacker in this scheme, and present the least reliability threshold for the fusion center against SSDF attack. Simulation results show that compared with the traditional cooperative spectrum sensing scheme, the SSDF attacker has a much lower utility in our proposed scheme, which drives it not to attack any more.

2020 ◽  
Vol 8 (6) ◽  
pp. 5042-5046

In this work, various spectrum sensing methods and algorithms are analyzed and their performance is been evaluated based on the different values of probabilities as obtained through MATLAB simulations. The work is been started from the analysis of the simplest single user sensing to advanced cooperative spectrum sensing and is further extended to CSS in AWGN noise and flat-fading channels. The results indicates that advanced cooperative spectrum sensing gives much better sensing decisions as compared to the results obtained by simulating single user sensing method. Simulation results obtained shows that Pd increases with Pf and also shows good values for SNR more than 0 dB. Also the Pd increases from 0.7 to 0.84 as we go from single user detection to CSS.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Sajjad Khan ◽  
Muhammad Jibran ◽  
Insoo Koo ◽  
Su Min Kim ◽  
Junsu Kim

Cognitive radio (CR) is being considered as a vital technology to provide solution to spectrum scarcity in next generation network, by efficiently utilizing the vacant spectrum of the licensed users. Cooperative spectrum sensing in cognitive radio network has a promising performance compared to the individual sensing. However, the existence of the malicious users’ attack highly degrades the performance of the cognitive radio networks by sending falsified data also known as spectrum sensing data falsification (SSDF) to the fusion center. In this paper, we propose a double adaptive thresholding technique in order to differentiate legitimate users from doubtful and malicious users. Prior to the double adaptive approach, the maximal ratio combining (MRC) scheme is utilized to assign weight to each user such that the legitimate users experience higher weights than the malicious users. Double adaptive threshold is applied to give a fair chance to the doubtful users to ensure their credibility. A doubtful user that fails the double adaptive threshold test is declared as a malicious user. The results of the legitimate users are combined at the fusion center by utilizing Dempster-Shafer (DS) evidence theory. Effectiveness of the proposed scheme is proved through simulations by comparing with the existing schemes.


2021 ◽  
Vol 11 (5) ◽  
pp. 2362
Author(s):  
Muhammad Sajjad Khan ◽  
Mohammad Faisal ◽  
Su Min Kim ◽  
Saeed Ahmed ◽  
Marc St-Hilaire ◽  
...  

Cooperative spectrum sensing (CSS) is a vital part of cognitive radio networks, which ensures the existence of the primary user (PU) in the network. However, the presence of malicious users (MUs) highly degrades the performance of the system. In the proposed scheme, each secondary user (SU) reports to the fusion center (FC) with a hard decision of the sensing energy to indicate the existence of the PU. The main contribution of this work deals with MU attacks, specifically spectrum sensing data falsification (SSDF) attacks. In this paper, we propose a correlation-based approach to differentiate between the SUs and the outliers by determining the sensing of each SU, and the average value of sensing information with other SUs, to predict the SSDF attack in the system. The FC determines the abnormality of a SU by determining the similarity for each SU with the remaining SUs by following the proposed scheme and declares the SU as an outlier using the box-whisker plot. The effectiveness of the proposed scheme was demonstrated through simulations.


2021 ◽  
Author(s):  
Lamiaa Khalid

In this thesis, we focus on two important design aspects of cooperative spectrum sensing (CSS) in cognitive radio networks which are the selection criterion of cooperating secondary users and the fusion technique for combining their local sensing decisions. We propose a novel adaptive user-group assignment algorithm that addresses the problem of sensing accuracy-efficiency trade-off in group-based CSS with heterogeneous cooperating secondary users. The performance of the proposed algorithm is bounded by 4.2% of the optimal solution. Through extensive simulations, we demonstrate that the proposed algorithm can effectively improve the performance of CSS in terms of the opportunistic throughput, sensing overhead and the number of sensing rounds needed to discover an available channel. Considering the different detection performance of cooperating secondary users, we propose a novel reliability-based decision fusion scheme in which a weight is assigned to each secondary user's local decision based on its reliability. Since the knowledge of the local probabilities of detection and false alarm for each secondary detector may not be known in practice, we employ a counting process to estimate those probabilities based on past global and local decisions. We then formulate the problem of minimizing the network probability of sensing error and develop a dual search algorithm, based on a non-linear Lagrangian approach, to solve the formulated problem. Our simulation results show that the dual algorithm converges to the optimal value with zero duality gap using few numbers of iterations. We also show that the probability of error is reduced by 18% and 88% compared to the OR and AND fusion rules, respectively, when the number of secondary users is eight. We then address the practical concern of secondary users reporting correlated local decisions to the fusion center. For this scenario, we formulate the problem of minimizing the network probability of sensing error optimization problem and employ the genetic algorithm to jointly find the optimal K*-out-of-M fusion rule and the optimal local threshold for a certain correlation index. Simulation results show that the network probability of sensing error degrades as the degree of correlation between cooperating secondary users increases. We also study the problem of multiband cooperative joint detection in the presence of sensing errors due to time offset. We derive the aggregate opportunistic throughput and aggregate interference to primary users for multiband cooperative joint detection in the presence of time offset. Our numerical results demonstrate the negative impact of the time offset on the aggregate opportunistic throughput of multiband cooperative joint detection.


2021 ◽  
Author(s):  
Lamiaa Khalid

In this thesis, we focus on two important design aspects of cooperative spectrum sensing (CSS) in cognitive radio networks which are the selection criterion of cooperating secondary users and the fusion technique for combining their local sensing decisions. We propose a novel adaptive user-group assignment algorithm that addresses the problem of sensing accuracy-efficiency trade-off in group-based CSS with heterogeneous cooperating secondary users. The performance of the proposed algorithm is bounded by 4.2% of the optimal solution. Through extensive simulations, we demonstrate that the proposed algorithm can effectively improve the performance of CSS in terms of the opportunistic throughput, sensing overhead and the number of sensing rounds needed to discover an available channel. Considering the different detection performance of cooperating secondary users, we propose a novel reliability-based decision fusion scheme in which a weight is assigned to each secondary user's local decision based on its reliability. Since the knowledge of the local probabilities of detection and false alarm for each secondary detector may not be known in practice, we employ a counting process to estimate those probabilities based on past global and local decisions. We then formulate the problem of minimizing the network probability of sensing error and develop a dual search algorithm, based on a non-linear Lagrangian approach, to solve the formulated problem. Our simulation results show that the dual algorithm converges to the optimal value with zero duality gap using few numbers of iterations. We also show that the probability of error is reduced by 18% and 88% compared to the OR and AND fusion rules, respectively, when the number of secondary users is eight. We then address the practical concern of secondary users reporting correlated local decisions to the fusion center. For this scenario, we formulate the problem of minimizing the network probability of sensing error optimization problem and employ the genetic algorithm to jointly find the optimal K*-out-of-M fusion rule and the optimal local threshold for a certain correlation index. Simulation results show that the network probability of sensing error degrades as the degree of correlation between cooperating secondary users increases. We also study the problem of multiband cooperative joint detection in the presence of sensing errors due to time offset. We derive the aggregate opportunistic throughput and aggregate interference to primary users for multiband cooperative joint detection in the presence of time offset. Our numerical results demonstrate the negative impact of the time offset on the aggregate opportunistic throughput of multiband cooperative joint detection.


Sign in / Sign up

Export Citation Format

Share Document