cooperative spectrum sensing
Recently Published Documents


TOTAL DOCUMENTS

1995
(FIVE YEARS 351)

H-INDEX

47
(FIVE YEARS 5)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 129
Author(s):  
Mingdong Xu ◽  
Zhendong Yin ◽  
Yanlong Zhao ◽  
Zhilu Wu

cognitive radio, as a key technology to improve the utilization of radio spectrum, acquired much attention. Moreover, spectrum sensing has an irreplaceable position in the field of cognitive radio and was widely studied. The convolutional neural networks (CNNs) and the gate recurrent unit (GRU) are complementary in their modelling capabilities. In this paper, we introduce a CNN-GRU network to obtain the local information for single-node spectrum sensing, in which CNN is used to extract spatial feature and GRU is used to extract the temporal feature. Then, the combination network receives the features extracted by the CNN-GRU network to achieve multifeatures combination and obtains the final cooperation result. The cooperative spectrum sensing scheme based on Multifeatures Combination Network enhances the sensing reliability by fusing the local information from different sensing nodes. To accommodate the detection of multiple types of signals, we generated 8 kinds of modulation types to train the model. Theoretical analysis and simulation results show that the cooperative spectrum sensing algorithm proposed in this paper improved detection performance with no prior knowledge about the information of primary user or channel state. Our proposed method achieved competitive performance under the condition of large dynamic signal-to-noise ratio.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Haibin Jiang ◽  
Zhiyong Yu ◽  
Jian Yang ◽  
Kai Kang

Full-duplex cooperative spectrum sensing (FD-CSS) is an important research field in the field of spectrum sensing. In the FD-CSS network, the secondary user (SU) senses the usage status of the authorized spectrum by the primary user (PU) through the sensing channel and then reports the perceived data to the fusion center (FC) through the reporting channel. The FC makes a comprehensive judgment after summarizing the data through the fusion algorithm. In the secondary network with SU, throughput is an important index to measure the performance of the network. Taking throughput as the optimization goal, this paper theoretically deduces and verifies the optimal data fusion algorithm in cooperative spectrum sensing (CSS), the threshold of optimal energy detection, and the optimal transmission power of SU in the secondary network. The simulation results show the correctness of the results in this paper.


Author(s):  
Utpala Borgohain ◽  
Surajit Borkotokey ◽  
S.K Deka

Cooperative spectrum sensing improves the sensing performance of secondary users by exploiting spatial diversity in cognitive radio networks. However, the cooperation of secondary users introduces some overhead also that may degrade the overall performance of cooperative spectrum sensing.  The trade-off between cooperation gain and overhead plays a vital role in modeling cooperative spectrum sensing.  This paper considers overhead in terms of reporting energy and reporting time. We propose a cooperative spectrum sensing based coalitional game model where the utility of the game is formulated as a function of throughput gain and overhead. To achieve a rational average throughput of secondary users, the overhead incurred is to be optimized. This work emphasizes on optimization of the overhead incurred. In cooperative spectrum sensing, the large number of cooperating users improve the detection performance, on the contrary, it increases overhead too. So, to limit the maximum coalition size we propose a formulation under the constraint of the probability of false alarm. An efficient fusion center selection scheme and an algorithm to select eligible secondary users for reporting are proposed to reduce the reporting overhead. We also outline a distributed cooperative spectrum sensing algorithm using the properties of the coalition formation game and prove that the utility of the proposed game has non-transferable properties.  The simulation results show that the proposed schemes reduce the overhead of reporting without compromising the overall detection performance of cooperative spectrum sensing.


Author(s):  
Hoai Trung Tran

Currently, the cognitive network is receiving much attention due to the advantages it brings to users. An important method in cognitive radio networks is spectrum sensing, as it allows secondary users (SUs) to detect the existence of a primary user (PU). Information of probability of false detection or warning about the PU is sent to a fusion center (FC) by the SUs, from which the FC will decide whether or not to allow the SUs to use the PU spectrum to obtain information. The transmission of information with a high signal to noise ratio (SNR) will increase the FC's ability to detect the existence of the PU. However, researchers are currently focusing on probabilistic formulas assuming that the channel is known ideally or there is nominal channel information at the FC; moreover, one model where the FC only knows the channel correlation matrix. Furthermore, studies are still assuming this is a simple multiple input – multiple output (MIMO) channel model but do not pay much attention to the signal processing at the transmitting and receiving antennas between the SUs and the FCs. A new method introduced in this paper when combining beamforming and hierarchical codebook makes the ability to detect the existence of the PU at the FC significantly increased compared to traditional methods.


Author(s):  
Jussif J. Abularach Arnez ◽  
Luiz da Silva Mello ◽  
Rodolfo Saboia Souza

Sign in / Sign up

Export Citation Format

Share Document