fusion center
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 36)

H-INDEX

10
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7618
Author(s):  
Jiho Seo ◽  
Jonghyeok Lee ◽  
Jaehyun Park ◽  
Hyungju Kim ◽  
Sungjin You

To estimate range and angle information of multiple targets, FMCW MIMO radars have been exploited with 2D MUSIC algorithms. To improve estimation accuracy, received signals from multiple FMCW MIMO radars are collected at the data fusion center and processed coherently, which increases data communication overhead and implementation complexity. To resolve them, we propose the distributed 2D MUSIC algorithm with coordinate transformation, in which 2D MUSIC algorithm is operated with respect to the reference radar’s coordinate at each radar in a distributed way. Rather than forwarding the raw data of received signal to the fusion center, each radar performs 2D MUSIC with its own received signal in the transformed coordinates. Accordingly, the distributed radars do not need to report all their measured signals to the data fusion center, but they forward their local cost function values of 2D MUSIC for the radar image region of interest. The data fusion center can then estimate the range and angle information of targets jointly from the aggregated cost function. By applying the proposed scheme to the experimentally measured data, its performance is verified in the real environment test.


Information ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 415
Author(s):  
Nuha A. S. Alwan ◽  
Zahir M. Hussain

This work combines compressive sensing and short word-length techniques to achieve localization and target tracking in wireless sensor networks with energy-efficient communication between the network anchors and the fusion center. Gradient descent localization is performed using time-of-arrival (TOA) data which are indicative of the distance between anchors and the target thereby achieving range-based localization. The short word-length techniques considered are delta modulation and sigma-delta modulation. The energy efficiency is due to the reduction of the data volume transmitted from anchors to the fusion center by employing any of the two delta modulation variants with compressive sensing techniques. Delta modulation allows the transmission of one bit per TOA sample. The communication energy efficiency is increased by RⱮ, R ≥ 1, where R is the sample reduction ratio of compressive sensing, and Ɱ is the number of bits originally present in a TOA-sample word. It is found that the localization system involving sigma-delta modulation has a superior performance to that using delta-modulation or pure compressive sampling alone, in terms of both energy efficiency and localization error in the presence of TOA measurement noise and transmission noise, owing to the noise shaping property of sigma-delta modulation.


Author(s):  
Nuha A. S. Alwan ◽  
Zahir M. Hussain

This work combines compressive sensing and short word-length techniques to achieve localization and target tracking in wireless sensor networks with energy-efficient communication between the network anchors and the fusion center. Gradient descent localization is performed using time-of-arrival (TOA) data which are indicative of the distance between anchors and the target thereby achieving range-based localization. The short word-length techniques considered are delta modulation and sigma-delta modulation. The energy efficiency is due to the reduction of the data volume transmitted from anchors to the fusion center by employing any of the two delta modulation variants with compressive sensing techniques. Delta modulation allows the transmission of one bit per TOA sample. The communication energy efficiency is increased by RⱮ, R≥1, where R is the sample reduction ratio of compressive sensing and Ɱ is the number of bits originally present in a TOA-sample word. It is found that the localization system involving sigma-delta modulation has a superior performance to that using delta-modulation or pure compressive sampling alone, in terms of both energy efficiency and localization error in the presence of TOA measurement noise, owing to the noise shaping property of sigma-delta modulation.


2021 ◽  
Vol 36 (2) ◽  
pp. 129-134
Author(s):  
Mahmoud A. Ammar ◽  
Salahedin A. Rehan

Cognitive Radio (CR) can be defined as a technology that allows users to change the transmission parameters as required to increase the spectrum efficiency. Because of this mechanism, some threats emerge. Two major threats are found in CR. The first is the Primary User Emulation Attack (PUEA), where the attacker is able to transmit at a forbidden time slot effectively, emulating the signals of the primary user. This makes all the system users believe that the spectrum is occupied by a good primary user.  The second threat is known as the spectrum sensing data falsification attack (SSDF). In this case, the attackers send false observation information, intentionally or unintentionally, to the fusion center (FC), causing it to make the wrong decision. In this study, the scheme presented  was based on a users' reputation for secure spectrum access in cognitive radio networks. Each Secondary User (SU) performs local sensing and then forwards the sensing results to the main fusion center FC. The FC makes the final decision about the presence of the primary user based on the proposed approach. The schemes substantially reduce the effect of cognitive users with low reputation values while improving the impact of cognitive users with the high reputation values on the final decision. It has been verified that the proposed approach can improve the sensing performance under the impact of a different number of reliable and unreliable users in a CR network. Results based on simulation show that the proposed scheme outperforms the traditional majority scheme despite a high number of malicious users.


2021 ◽  
pp. 49-56
Author(s):  
V. I. Parfenov ◽  
V. D. Le

The paper considers distributed detection problem basis on using soft decision scheme both in the local sensors and in the fusion center (FC). The algorithm for making soft decisions when receiving data from local sensors in the fusion center and its performance characteristics, which are necessary for the formation decision fusion rule, are presented. The dependencies of the total error probability on the energy parameter taking into account signal-to-noise ratio at the level of local sensors and the channel’s signal-to-noise ratio are given. The gain of the fusion rule basis on the aggregation of soft decisions in the FC when receiving data about soft local decisions, in efficiency compared to hard fusion rule.


2021 ◽  
Author(s):  
Sattar J. Hussain

This dissertation presents new approaches for cognitive radio networks that combat fading effects and improve detection accuracy. We propose an advance framework for performance analysis of cooperative spectrum sensing over non-identical Nakagami- A detect-amplify-and-forward strategy is proposed to mitigate bandwidth requirements of relaying local observations to a fusion center. The end-to-end performance of a relay-based cooperative spectrum sensing over independent identically distributed Rayleigh fading channels is also investigated in this dissertation. Specifically, we aim to incorporate sensing time, end-to-end SNR, and end-to-end channel statistic into the performance analysis of cooperative CR networks. We also propose a cluster-based cooperative spectrum sensing approach to overcome the bandwidth limitations of the reporting links. The approach reduces the number of reporting terminals to a minimal reporting set and replaces the global fusion center by a local fusion center to mitigate the destructive channel conditions of global relaying channels. A new approach is proposed to select the location of the local fusion center using the general center scheme in graph theory. We aim to show that multipath fading on relaying channels yields similar performance degradations as multipath fading on sensing channels. With the detect-amplify-and forward strategy, refraining the heavily faded relays improves the detection accuracy. A gain of 3 dB is achieved by switching from amplify-and-forward strategy to detect-amplify-and-forward strategy with 3 cooperative users. Compared to the non-cooperative spectrum sensing, a gain of up to 8 dB is achieved with 4 cooperative users and equal gain combining receiver. Similar experimental set up but with selection combining receiver, a gain of 5 dB is achieved.


2021 ◽  
Author(s):  
Sattar J. Hussain

This dissertation presents new approaches for cognitive radio networks that combat fading effects and improve detection accuracy. We propose an advance framework for performance analysis of cooperative spectrum sensing over non-identical Nakagami- A detect-amplify-and-forward strategy is proposed to mitigate bandwidth requirements of relaying local observations to a fusion center. The end-to-end performance of a relay-based cooperative spectrum sensing over independent identically distributed Rayleigh fading channels is also investigated in this dissertation. Specifically, we aim to incorporate sensing time, end-to-end SNR, and end-to-end channel statistic into the performance analysis of cooperative CR networks. We also propose a cluster-based cooperative spectrum sensing approach to overcome the bandwidth limitations of the reporting links. The approach reduces the number of reporting terminals to a minimal reporting set and replaces the global fusion center by a local fusion center to mitigate the destructive channel conditions of global relaying channels. A new approach is proposed to select the location of the local fusion center using the general center scheme in graph theory. We aim to show that multipath fading on relaying channels yields similar performance degradations as multipath fading on sensing channels. With the detect-amplify-and forward strategy, refraining the heavily faded relays improves the detection accuracy. A gain of 3 dB is achieved by switching from amplify-and-forward strategy to detect-amplify-and-forward strategy with 3 cooperative users. Compared to the non-cooperative spectrum sensing, a gain of up to 8 dB is achieved with 4 cooperative users and equal gain combining receiver. Similar experimental set up but with selection combining receiver, a gain of 5 dB is achieved.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2924
Author(s):  
Yonggi Hong ◽  
Yunji Yang ◽  
Jaehyun Park

In this paper, we propose a cooperative linear discriminant analysis (LDA)-based motion classification algorithm for distributed micro-Doppler (MD) radars which are connected to a data fusion center through the limited backhaul. Due to the limited backhaul, each radar cannot report the high-dimensional data of a multi-aspect angle MD signature to the fusion center. Instead, at each radar, the dimensionality of the MD signature is reduced by using the LDA algorithm and the dimensionally-reduced MD signature can be collected at the data fusion center. To further reduce the burden of backhaul, we also propose the softmax processing method in which the distances of the sensed MD signatures from the centers of clusters for all motion candidates are computed at each radar. The output of the softmax process at each radar is quantized through the pyramid vector quantization with a finite number of bits and is reported to the data fusion center. To improve the classification performance at the fusion center, the channel resources of the backhaul are adaptively allocated based on the classification separability at each radar. The proposed classification performance was assessed with synthetic simulation data as well as experimental data measured through the USRP-based MD radar.


Sign in / Sign up

Export Citation Format

Share Document