Proof and Application of Complex Impedance of Inductor and Capacitor

2014 ◽  
Vol 568-570 ◽  
pp. 1213-1216
Author(s):  
Sheng Guo Zhang ◽  
Xiao Ping Dang

This paper aims at proving the complex impedance of the inductor and capacitor elements and applying the proved complex impedance concept to directly obtain the transfer function model of the complicated circuit network. Based on Laplace Transformation method, the complex impedances of the inductor and capacitor elements are proved. Using the proved complex impedances and the equivalent complex impedances in series and in parallel, both the transfer functions of the passive and active circuit networks are modeled. This facilitates the transfer function modeling of the complicated circuit network very much.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
M. Eshghi ◽  
M. Hamzavi ◽  
S. M. Ikhdair

The spatially dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials including a tensor interaction potential under the spin and pseudospin (p-spin) symmetric limits by using the Laplace transformation method (LTM). Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ. Some numerical results are given too. The effect of the tensor interaction on the bound states is presented. It is shown that the tensor interaction removes the degeneracy between two states in the spin doublets. We also investigate the effects of the spatially-dependent mass on the bound states under the conditions of the spin symmetric limit and in the absence of tensor interaction (T=0).


2014 ◽  
Vol 983 ◽  
pp. 420-423
Author(s):  
Sheng Guo Zhang ◽  
Xiao Ping Dang

This paper aims at directly modeling the transfer functions of mass-spring-damper systems. Using complex stiffness of mass, spring, and damper elements and equivalent complex stiffness of these elements in series and/or in parallel, the transfer functions of the mass-spring-damper systems are modeled quickly. This is very convenient to the modeling of the complicated mechanical systems.


2015 ◽  
Vol 75 ◽  
pp. 448-458 ◽  
Author(s):  
Weiqiang Kong ◽  
Bengt Perers ◽  
Jianhua Fan ◽  
Simon Furbo ◽  
Federico Bava

2005 ◽  
Vol 128 (4) ◽  
pp. 680-686 ◽  
Author(s):  
T. Koppel ◽  
L. Ainola

The transition from a laminar to a turbulent flow in highly accelerated start-up pipe flows is described. In these flows, turbulence springs up simultaneously over the entire length of the pipe near the wall. The unsteady boundary layer in the pipe was analyzed theoretically with the Laplace transformation method and the asymptotic method for small values of time. From the experimental results available, relationships between the flow parameters and the transition time were derived. These relationships are characterized by the analytical forms. A physical explanation for the regularities in the turbulence spring-up time is proposed.


Sign in / Sign up

Export Citation Format

Share Document