energy eigenvalue
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 30)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2015 (1) ◽  
pp. 012169
Author(s):  
V. Zalipaev ◽  
V. Kuidin

Abstract The properties of screening effect for energy spectrum of excitons in monolayer transition metal dichalcogenides are investigated using a multiband model. The excitonic hamiltonian in the product base of the Dirac single-particle is used. The corresponding energy eigenvalue system of the first order ODE (radial equations) was solved using the finite difference method. This enables to determine the energy eigenvalues of the discrete excitonic spectrum and the wave functions. We compare the results for the energy spectrum and the corresponding eigen-functions forms for WS 2 and WSe 2 computed for two different potentials: pure Coulomb and screened Coulomb (Keldysh potential). It is demonstrated that excitonic energy levels for unscreened potential lie dipper, and the corresponding eigen-functions’ forms differ from those obtained for screened one.


Author(s):  
M. Hosseinpour ◽  
H. Hassanabadi ◽  
J. Kriz ◽  
S. Hassanabadi ◽  
B. C. Lütfüoğlu

In this study, we survey the generalized Duffin–Kemmer–Petiau oscillator containing a non-minimal coupling interaction in the context of rainbow gravity in the presence of the cosmic topological defects in space-time. In this regard, we intend to investigate relativistic quantum dynamics of a spin-0 particle under the modification of the dispersion relation according to the Katanaev–Volovich geometric approach. Thus, based on the geometric model, we study the aforementioned bosonic system under the modified background by a few rainbow functions. In this way, by using an analytical method, we acquire energy eigenvalues and corresponding wave functions to each scenario. Regardless of rainbow gravity function selection, the energy eigenvalue can present symmetric, anti-symmetric, and symmetry breaking characteristics. Besides, one can see that the deficit angular parameter plays an important role in the solutions.


2021 ◽  
Vol 79 (10) ◽  
pp. 1005-1015
Author(s):  
Fei Yao ◽  
Yimin Cao

Shotcrete structures are widely used in tunnel engineering. Quality inspection is difficult, and the traditional ultrasonic testing (UT) method based on first arrival velocity has limitations. In this paper, shotcrete-rock specimens were made in a laboratory and evaluated using UT. Wavelet packet decomposition is introduced for better frequency analysis of the condition evaluation. Two methods, including calculation of the energy eigenvalues and machine learning, are used to describe the contact quality at the interface between the shotcrete and rock. The relative energy eigenvalue increases with the gradual reduction of contact quality, which can become a quantitative index of the contact quality. Machine learning performed well in the rapid recognition of discontinuities in the multiple-classification models. Both methods based on wavelet packet decomposition achieved good results in identifying discontinuities and have the potential to be used in practical engineering applications.


Author(s):  
Jafar Jahanpanah ◽  
A Vahedi ◽  
H . Khosrojerdi

The relativistic behavior of Hydrogen-like atoms (HLAs) is investigated in Heisenberg picture for the first time. The relativistic vibrational Hamiltonian (RVH) is first defined as a power series of harmonic oscillator Hamiltonian by using the relativistic energy eigenvalue . By applying the first-order RVH (proportional to ) to Heisenberg equation, a pair of coupled equations is turned out for the motion of electron position and its relativistic linear momentum. A simple comparison of the first-order relativistic and nonrelativistic equations reveals this reality that the natural (fundamental) frequency of electron oscillation (like entropy) is slowly raised by increasing the atomic number. The second-order RVH (proportional to ) have then been implemented to determine an exact expression for the electron relativistic frequency in the different atomic energy levels. In general, the physical role of RVH is fundamental because it not only specifies the temporal relativistic variations of position, velocity, and linear momentum of oscillating electron, but also identifies the corresponding relativistic potential, kinetic, and mechanical energies. The results will finally be testified by demonstrating the energy conservation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kallol Mondal ◽  
Sudin Ganguly ◽  
Santanu K. Maiti

AbstractAn essential attribute of many fractal structures is self-similarity. A Sierpinski gasket (SPG) triangle is a promising example of a fractal lattice that exhibits localized energy eigenstates. In the present work, for the first time we establish that a mixture of both extended and localized energy eigenstates can be generated yeilding mobility edges at multiple energies in presence of a time-periodic driving field. We obtain several compelling features by studying the transmission and energy eigenvalue spectra. As a possible application of our new findings, different thermoelectric properties are discussed, such as electrical conductance, thermopower, thermal conductance due to electrons and phonons. We show that our proposed method indeed exhibits highly favorable thermoelectric performance. The time-periodic driving field is assumed through an arbitrarily polarized light, and its effect is incorporated via Floquet-Bloch ansatz. All transport phenomena are worked out using Green’s function formalism following the Landauer–Büttiker prescription.


Author(s):  
M. Abu-Shady ◽  
C.O. Edet ◽  
A.N. Ikot

The dissociation of quarkonia in a thermal QCD medium in the background of an AB and strong magnetic fields is investigated. For this purpose, the Schrödinger equation with a charged quarkonium in the Cornell potential under the influence of AB flux and an external magnetic fields directed along the z-axis is employed. By using the Nikiforov-Uvarov (NU) method, the energy eigenvalue is obtained. The effect of temperature, AB flux, and an external magnetic field is studied. The study shows that the dissociation energy of 1S states of charmonium and bottomonium decreases with increasing temperature and AB flux, and external magnetic field. Also, the quarkonium melts faster in a hot medium in the presence of AB flux and external magnetic field. We found that the charmonium melts at 13.79 m<sup>2</sup><sub>π</sub>GeV<sup>2</sup> and the bottomonium melts at 99.48 m<sup>2</sup><sub>π</sub>GeV<sup>2</sup> . A comparison is studied with other works. Thus, the present non-relativistic model gives satisfactory results for dissociation binding energy in a hot medium when AB flux and external magnetic fields are included.


Author(s):  
Victor V. Zalipaev ◽  
Vladislav V. Kuidin

The properties of the energy spectrum of excitons in monolayer transition metal dichalcogenides are investigated using a multiband model. In the multiband model, we use the excitonic Hamiltonian in the product base of the Dirac single-particle states at the conduction and valence band edges. Following the separation of variables, we decouple the corresponding energy eigenvalue system of the first-order ODE radial equations rigorously and solve the resulting second-order ODE self-consistently, using the finite difference method, thus we determine the energy eigenvalues of the discrete excitonic spectrum and the corresponding wave functions. We also developed a WKB approach to solve the same spectral problem in semiclassical approximation for the resulting ODE. We compare the results for the energy spectrum and the corresponding eigen-function forms for WS 2 and WSe 2 obtained by means of both methods. We also compare our results for the energy spectrum with other theoretical works for excitons, and with available experimental data.


Author(s):  
Enayatolah Yazdankish

The generalized Woods–Saxon potential plus repulsive Coulomb interaction is considered in this work. The supersymmetry quantum mechanics method is used to get the energy spectrum of Schrodinger equation and also the Nikiforov–Uvarov approach is employed to solve analytically the Schrodinger equation in the framework of quantum mechanics. The potentials with centrifugal term include both exponential and radial terms, hence, the Pekeris approximation is considered to approximate the radial terms. By using the step-by-step Nikiforov–Uvarov method, the energy eigenvalue and wave function are obtained analytically. After that, the spectrum of energy is obtained by the supersymmetry quantum mechanics method. The energy eigenvalues obtained from each method are the same. Then in special cases, the results are compared with former result and a full agreement is observed. In the [Formula: see text]-state, the standard Woods–Saxon potential has no bound state, but with Coulomb repulsive interaction, it may have bound state for zero angular momentum.


2021 ◽  
Vol 36 (08n09) ◽  
pp. 2150053
Author(s):  
Faizuddin Ahmed

We study a generalized KG-oscillator in the five-dimensional cosmic string geometry background with a magnetic field and quantum flux using Kaluza–Klein theory under the effects of a Cornell-type scalar potential, and observe the gravitational analogue of the Aharonov–Bohm effect. We see that the scalar potential allows the formation of bound states solution, and the energy eigenvalue depends on the global parameter characterizing the space–time. We also see that the magnetic field depends on quantum numbers of the relativistic system which shows a quantum effect.


Sign in / Sign up

Export Citation Format

Share Document