Fault Diagnosis of Coal Electrical Shearer Based on Quantum Neural

2014 ◽  
Vol 574 ◽  
pp. 452-456 ◽  
Author(s):  
Xian Min Ma ◽  
Mei Hui Xu

An improved quantum neural network model and its learning algorithm are proposed for fault diagnosis of the coal electrical haulage shearer in order to on line monitor working states of the large mining rotating machines. Based on traditional BP neural network, the three-layer quantum neural network is constructed to combine quantum calculation and neural network for the error correction learning algorithm. According to the information processing mode of the biology neuron and the quantum computing theory, the improved quantum neural network model has the ability of identifying uncertainty in fault data classifications and approximating the nonlinear function for different fault types to monitor the electrical motor voltage, current, temperature, shearer location, boom inclination, haulage speed and direction in the coal electrical cutting machines. The theory analysis and simulation experiment results show that the control performances and the safety reliability of the coal shearer are obviously improved, while the quantum neural network model is applied to the nonlinear feature fault diagnosis of the coal electrical haulage shearer.

2010 ◽  
Vol 20-23 ◽  
pp. 612-617 ◽  
Author(s):  
Wei Sun ◽  
Yu Jun He ◽  
Ming Meng

The paper presents a novel quantum neural network (QNN) model with variable selection for short term load forecasting. In the proposed QNN model, first, the combiniation of maximum conditonal entropy theory and principal component analysis method is used to select main influential factors with maximum correlation degree to power load index, thus getting effective input variables set. Then the quantum neural network forecating model is constructed. The proposed QNN forecastig model is tested for certain province load data. The experiments and the performance with QNN neural network model are given, and the results showed the method could provide a satisfactory improvement of the forecasting accuracy compared with traditional BP network model.


2019 ◽  
Vol 15 (11) ◽  
pp. 155014771988816 ◽  
Author(s):  
Bing Han ◽  
Xiaohui Yang ◽  
Yafeng Ren ◽  
Wanggui Lan

The running state of a geared transmission system affects the stability and reliability of the whole mechanical system. It will greatly reduce the maintenance cost of a mechanical system to identify the faulty state of the geared transmission system. Based on the measured gear fault vibration signals and the deep learning theory, four fault diagnosis neural network models including fast Fourier transform–deep belief network model, wavelet transform–convolutional neural network model, Hilbert-Huang transform–convolutional neural network model, and comprehensive deep neural network model are developed and trained respectively. The results show that the gear fault diagnosis method based on deep learning theory can effectively identify various gear faults under real test conditions. The comprehensive deep neural network model is the most effective one in gear fault recognition.


Author(s):  
Kun Xu ◽  
Shunming Li ◽  
Jinrui Wang ◽  
Zenghui An ◽  
Yu Xin

Deep learning method is gradually applied in the field of mechanical equipment fault diagnosis because it can learn complex and useful features automatically from the vibration signals. Among the many intelligent diagnostic models, convolutional neural network has been gradually applied to intelligent fault diagnosis of bearings due to its advantages of local connection and weight sharing. However, there are still some drawbacks. (1) The training process of convolutional neural network is slow and unstable. It has more training parameters. (2) It cannot perform well under different working conditions, such as noisy environment and different workloads. In this paper, a novel model named adaptive and fast convolutional neural network with wide receptive field is presented to overcome the aforementioned deficiencies. The prime innovations include the following. First, a deep convolutional neural network architecture is constructed using the scaled exponential linear unit activation function and global average pooling. The model has fewer training parameters and can converge rapidly and stably. Second, the model has a wide receptive field with two medium and three small length convolutional kernels. It also has high diagnostic accuracy and robustness when the environment is noisy and workloads are changed compared with other models. Furthermore, to demonstrate how the wide receptive field convolutional neural network model works, the reasons for high model performance are analyzed and the learned features are also visualized. Finally, the wide receptive field convolutional neural network model is verified by the vibration dataset collected in the background of high noise, and the results indicate that it has high diagnostic performance.


2018 ◽  
Vol 129 ◽  
pp. 1252-1262 ◽  
Author(s):  
Shubiao Shi ◽  
Guannan Li ◽  
Huanxin Chen ◽  
Yunpeng Hu ◽  
Xiaoyan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document