scholarly journals Comparisons of different deep learning-based methods on fault diagnosis for geared system

2019 ◽  
Vol 15 (11) ◽  
pp. 155014771988816 ◽  
Author(s):  
Bing Han ◽  
Xiaohui Yang ◽  
Yafeng Ren ◽  
Wanggui Lan

The running state of a geared transmission system affects the stability and reliability of the whole mechanical system. It will greatly reduce the maintenance cost of a mechanical system to identify the faulty state of the geared transmission system. Based on the measured gear fault vibration signals and the deep learning theory, four fault diagnosis neural network models including fast Fourier transform–deep belief network model, wavelet transform–convolutional neural network model, Hilbert-Huang transform–convolutional neural network model, and comprehensive deep neural network model are developed and trained respectively. The results show that the gear fault diagnosis method based on deep learning theory can effectively identify various gear faults under real test conditions. The comprehensive deep neural network model is the most effective one in gear fault recognition.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yulin Jin ◽  
Changzheng Chen ◽  
Siyu Zhao

Intelligent diagnosis applies deep learning algorithms to mechanical fault diagnosis, which can classify the fault forms of machines or parts efficiently. At present, the intelligent diagnosis of rolling bearings mostly adopts a single-sensor signal, and multisensor information can provide more comprehensive fault features for the deep learning model to improve the generalization ability. In order to apply multisensor information more effectively, this paper proposes a multiscale convolutional neural network model based on global average pooling. The diagnostic model introduces a multiscale convolution kernel in the feature extraction process, which improves the robustness of the model. Meanwhile, its parallel structure also makes up for the shortcomings of the multichannel input fusion method. In the multiscale fusion process, the global average pooling method is used to replace the way to reshape the feature maps into a one-dimensional feature vector in the traditional convolutional neural network, which effectively retains the spatial structure of the feature maps. The model proposed in this paper has been verified by the bearing fault data collected by the experimental platform. The experimental results show that the algorithm proposed in this paper can fuse multisensor data effectively. Compared with other data fusion algorithms, the multiscale convolutional neural network model based on global average pooling has shorter training epochs and better fault diagnosis results.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.


2021 ◽  
Vol 16 ◽  
Author(s):  
Farida Alaaeldin Mostafa ◽  
Yasmine Mohamed Afify ◽  
Rasha Mohamed Ismail ◽  
Nagwa Lotfy Badr

Background: Protein sequence analysis helps in the prediction of protein functions. As the number of proteins increases, it gives the bioinformaticians a challenge to analyze and study the similarity between them. Most of the existing protein analysis methods use Support Vector Machine. Deep learning did not receive much attention regarding protein analysis as it is noted that little work focused on studying the protein diseases classification. Objective: The contribution of this paper is to present a deep learning approach that classifies protein diseases based on protein descriptors. Methods: Different protein descriptors are used and decomposed into modified feature descriptors. Uniquely, we introduce using Convolutional Neural Network model to learn and classify protein diseases. The modified feature descriptors are fed to the Convolutional Neural Network model on a dataset of 1563 protein sequences classified into 3 different disease classes: Aids, Tumor suppressor, and Proto oncogene. Results: The usage of the modified feature descriptors shows a significant increase in the performance of the Convolutional Neural Network model over Support Vector Machine using different kernel functions. One modified feature descriptor improved by 19.8%, 27.9%, 17.6%, 21.5%, 17.3%, and 22% for evaluation metrics: Area Under the Curve, Matthews Correlation Coefficient, Accuracy, F1-score, Recall, and Precision, respectively. Conclusion: Results show that the prediction of the proposed modified feature descriptors significantly surpasses that of Support Vector Machine model.


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


Author(s):  
Kun Xu ◽  
Shunming Li ◽  
Jinrui Wang ◽  
Zenghui An ◽  
Yu Xin

Deep learning method is gradually applied in the field of mechanical equipment fault diagnosis because it can learn complex and useful features automatically from the vibration signals. Among the many intelligent diagnostic models, convolutional neural network has been gradually applied to intelligent fault diagnosis of bearings due to its advantages of local connection and weight sharing. However, there are still some drawbacks. (1) The training process of convolutional neural network is slow and unstable. It has more training parameters. (2) It cannot perform well under different working conditions, such as noisy environment and different workloads. In this paper, a novel model named adaptive and fast convolutional neural network with wide receptive field is presented to overcome the aforementioned deficiencies. The prime innovations include the following. First, a deep convolutional neural network architecture is constructed using the scaled exponential linear unit activation function and global average pooling. The model has fewer training parameters and can converge rapidly and stably. Second, the model has a wide receptive field with two medium and three small length convolutional kernels. It also has high diagnostic accuracy and robustness when the environment is noisy and workloads are changed compared with other models. Furthermore, to demonstrate how the wide receptive field convolutional neural network model works, the reasons for high model performance are analyzed and the learned features are also visualized. Finally, the wide receptive field convolutional neural network model is verified by the vibration dataset collected in the background of high noise, and the results indicate that it has high diagnostic performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


Author(s):  
Weimeng Chu ◽  
Shunan Wu ◽  
Xiao He ◽  
Yufei Liu ◽  
Zhigang Wu

The identification accuracy of inertia tensor of combined spacecraft, which is composed by a servicing spacecraft and a captured target, could be easily affected by the measurement noise of angular rate. Due to frequently changing operating environments of combined spacecraft in space, the measurement noise of angular rate can be very complex. In this paper, an inertia tensor identification approach based on deep learning method is proposed to improve the ability of identifying inertia tensor of combined spacecraft in the presence of complex measurement noise. A deep neural network model for identification is constructed and trained by enough training data and a designed learning strategy. To verify the identification performance of the proposed deep neural network model, two testing set with different ranks of measure noises are used for simulation tests. Comparison tests are also delivered among the proposed deep neural network model, recursive least squares identification method, and tradition deep neural network model. The comparison results show that the proposed deep neural network model yields a more accurate and stable identification performance for inertia tensor of combined spacecraft in changeable and complex operating environments.


Sign in / Sign up

Export Citation Format

Share Document