Preparation and Characterization of Proton Exchange Membrane Based on Sulfonated Poly(arylene ether sulfone)/Polyacrylonitrile (SPAES/PAN)

2014 ◽  
Vol 577 ◽  
pp. 53-57
Author(s):  
Hang Wei ◽  
Guang Li

Sulfonated poly (arylene ether sulfone) s (SPAESs) exhibit good proton conductivity, thermal and mechanical properties, could act as candidates of proton exchange membranes for fuel cells. At the same time, the poor oxidative stability and excessive swelling ratio of SPAESs bring limitations for its further use. In this article, PAN was employed to mix with SPAES, and then SPAES/PAN blend membranes were prepared from the blend solution by casting. The water uptake, dimensional and oxidative stability, proton conductivity were measured with respect to the addition content of PAN, the phase morphology of the resultant SPAES/PAN were also observed by SEM. The results explained that the corporation of PAN into SPAES could reduce the water uptake and improve the oxidative stability of the obtained membranes compared with the pristine SPAES membrane. That the PAN phase distributed as separated domains in SPAES matrix was found, the interaction between SPAES and PAN may be present, which is responsible for the improvement of dimensional and oxidative stability. Although the proton conductivity of the blend membranes became reduced with increase of PAN content in the SPAES/PAN blend, the conductivity of 0.0265S/cm at 30°C could still be reached, satisfying the requirement for proton exchange membrane Fuel Cell

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1871 ◽  
Author(s):  
Ae Kim ◽  
Mohanraj Vinothkannan ◽  
Kyu Lee ◽  
Ji Chu ◽  
Sumg Ryu ◽  
...  

We designed and synthesized a series of sulfonated poly(arylene ether sulfone) (SPES) with different hydrophilic or hydrophobic oligomer ratios using poly-condensation strategy. Afterward, we fabricated the corresponding membranes via a solution-casting approach. We verified the SPES membrane chemical structure using nuclear magnetic resonance (1H NMR) and confirmed the resulting oligomer ratio. Field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) results revealed that we effectively attained phase separation of the SPES membrane along with an increased hydrophilic oligomer ratio. Thermal stability, glass transition temperature (Tg) and membrane elongation increased with the ratio of hydrophilic oligomers. SPES membranes with higher hydrophilic oligomer ratios exhibited superior water uptake, ion-exchange capacity, contact angle and water sorption, while retaining reasonable swelling degree. The proton conductivity results showed that SPES containing higher amounts of hydrophilic oligomers provided a 74.7 mS cm−1 proton conductivity at 90 °C, which is better than other SPES membranes, but slightly lower than that of Nafion-117 membrane. When integrating SPES membranes with proton-exchange membrane fuel cells (PEMFCs) at 60 °C and 80% relative humidity (RH), the PEMFC power density exhibited a similar increment-pattern like proton conductivity pattern.


2009 ◽  
Vol 114 (3) ◽  
pp. 1793-1802 ◽  
Author(s):  
Cui Liang ◽  
Tatsuo Maruyama ◽  
Yoshikage Ohmukai ◽  
Tomohiro Sotani ◽  
Hideto Matsuyama

2014 ◽  
Vol 989-994 ◽  
pp. 142-145
Author(s):  
Tong Xue ◽  
Zhao Xia Hu ◽  
Shou Wen Chen

A series of multiblock copolymers based on sulfonated poly (arylene ether sulfone) (bSPAES-SF) with highly rigid hydrophilic sulfonate blocks and flexible hydrophobic blocks were successfully synthesized by the condensation of sulfonated decafluorobiphenyl-terminated oligomers and the hydroxyl-terminated oligomers. The former oligomers were sulfonated by fuming sulfonic acid. The bSPAES-SF membranes with IEC of 1.26-1.70 mmol/g exhibited high proton conductivity, hydrolytic and dimensional stability.


2019 ◽  
Vol 4 (4) ◽  
pp. 901-911 ◽  
Author(s):  
Dinh Cong Tinh Vo ◽  
Minh Dat Thinh Nguyen ◽  
Dukjoon Kim

In the proton exchange membrane fuel cell, durability has recently been the critical issue in its operation.


Sign in / Sign up

Export Citation Format

Share Document