blend membranes
Recently Published Documents


TOTAL DOCUMENTS

606
(FIVE YEARS 79)

H-INDEX

57
(FIVE YEARS 7)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 395
Author(s):  
Raul Andres Becerra-Arciniegas ◽  
Riccardo Narducci ◽  
Gianfranco Ercolani ◽  
Luca Pasquini ◽  
Philippe Knauth ◽  
...  

In this work we report the synthesis of poly(vinylbenzylchloride-co-hexene) copolymer grafted with N,N-dimethylhexylammonium groups to study the effect of an aliphatic backbone without ether linkage on the ionomer properties. The copolymerization was achieved by the Ziegler–Natta method, employing the complex ZrCl4 (THF)2 as a catalyst. A certain degree of crosslinking with N,N,N′,N′-tetramethylethylenediamine (TEMED) was introduced with the aim of avoiding excessive swelling in water. The resulting anion exchange polymers were characterized by 1H-NMR, FTIR, TGA, and ion exchange capacity (IEC) measurements. The ionomers showed good alkaline stability; after 72 h of treatment in 2 M KOH at 80 °C the remaining IEC of 76% confirms that ionomers without ether bonds are less sensitive to a SN2 attack and suggests the possibility of their use as a binder in a fuel cell electrode formulation. The ionomers were also blended with polyvinyl alcohol (PVA) and crosslinked with glutaraldehyde. The water uptake of the blend membranes was around 110% at 25 °C. The ionic conductivity at 25 °C in the OH− form was 29.5 mS/cm.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 932
Author(s):  
Dalong Li ◽  
Changlu Gao ◽  
Xinyue Wang ◽  
Gang Wu ◽  
Jinghua Yin ◽  
...  

Membrane fouling has been one of the most important challenges in membrane separation operations. In this study, we report a facile strategy to prepare antifouling polysulfone (PSf) UF membranes by blending amphiphilic zwitterion polysulfone-co-sulfobetaine polysulfone (PSf-co-SBPSf) copolymer. The copolymer chemical structure was characterized by 1HNMR spectroscopy. The PSf/PSf-co-SBPSf blend membranes with various zwitterionic SBPSf segment contents exhibited better surface hydrophilicity and excellent antifouling ability compared to PSf and PSf/PEG membranes. The significant increase of both porosity and water permeance indicates that the PSf-co-SBPSf has a pore-forming effect. The pure water flux and flux recovery ratio of the PSf/PSf-co-SBPSf blend membranes were both remarked to improve 286.43 L/m2h and 92.26%, while bovine serum albumin (BSA) rejection remained at a high level (97.66%). More importantly, the water flux and BSA rejection see minimal variance after heat treatment, indicating excellent thermostability. Overall, the PSf/PSf-co-SBPSf blend membranes achieved a comprehensive performance of sustainable hydrophilic, high permeation flux, and remarkable antifouling ability, thus becoming a promising candidate in high-temperature separation application.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3467
Author(s):  
Johannes Bender ◽  
Britta Mayerhöfer ◽  
Patrick Trinke ◽  
Boris Bensmann ◽  
Richard Hanke-Rauschenbach ◽  
...  

As an alternative to common perfluorosulfonic acid-based polyelectrolytes, we present the synthesis and characterization of proton exchange membranes based on two different concepts: (i) Covalently bound multiblock-co-ionomers with a nanophase-separated structure exhibit tunable properties depending on hydrophilic and hydrophobic components’ ratios. Here, the blocks were synthesized individually via step-growth polycondensation from either partially fluorinated or sulfonated aromatic monomers. (ii) Ionically crosslinked blend membranes of partially fluorinated polybenzimidazole and pyridine side-chain-modified polysulfones combine the hydrophilic component’s high proton conductivities with high mechanical stability established by the hydrophobic components. In addition to the polymer synthesis, membrane preparation, and thorough characterization of the obtained materials, hydrogen permeability is determined using linear sweep voltammetry. Furthermore, initial in situ tests in a PEM electrolysis cell show promising cell performance, which can be increased by optimizing electrodes with regard to binders for the respective membrane material.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5740
Author(s):  
Tatiana Plisko ◽  
Yana Karslyan ◽  
Alexandr Bildyukevich

This study deals with the modification of polyphenylsulfone ultrafiltration membranes by introduction of an incompatible polymer polysulfone to the polyphenylsulfone casting solution to improve the permeability. The correlation between properties of the blend polyphenylsulfone/polysulfone solutions and porous anisotropic membranes for ultrafiltration prepared from these solutions was revealed. The blend polyphenylsulfone/polysulfone solutions were investigated using a turbidity spectrum method, optical microscopy and measurements of dynamic viscosity and turbidity. The structure of the prepared blend flat sheet membranes was studied using scanning electron microscopy. Membrane separation performance was investigated in the process of ultrafiltration of human serum albumin buffered solutions. It was found that with the introduction of polysulfone to the polyphenylsulfone casting solution in N-methyl-2-pyrrolidone the size of supramolecular particles significantly increases with the maximum at (40–60):(60:40) polyphenylsulfone:polysulfone blend ratio from 76 nm to 196–354 nm. It was shown that polyphenylsulfone/polysulfone blend solutions, unlike the solutions of pristine polymers, are two-phase systems (emulsions) with the maximum droplet size and highest degree of polydispersity at polyphenylsulfone/polysulfone blend ratios (30–60):(70–40). Pure water flux of the blend membranes passes through a maximum in the region of the most heterogeneous structure of the casting solution, which is associated with the imposition of a polymer-polymer phase separation on the non-solvent induced phase separation upon membrane preparation. The application of polyphenylsulfone/polysulfone blends as membrane-forming polymers and polyethylene glycol (Mn = 400 g·mol−1) as a pore-forming agent to the casting solutions yields the formation of ultrafiltration membranes with high membrane pure water flux (270 L·m−2·h−1 at 0.1MPa) and human serum albumin rejection of 85%.


2021 ◽  
pp. 107364
Author(s):  
María Herrero-Herrero ◽  
Sara Alberdi-Torres ◽  
Maria Luisa González-Fernández ◽  
Guillermo Vilariño-Feltrer ◽  
José Carlos Rodríguez-Hernández ◽  
...  

2021 ◽  
pp. 119764
Author(s):  
Ali K. Sekizkardes ◽  
Samir Budhathoki ◽  
Lingxiang Zhu ◽  
Victor Kusuma ◽  
Zi Tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document