Enhanced Horizontal and Vertical Resolution in 4-D Electrical Resistivity Tomography for Environmental Slope Study in Penang Island

2014 ◽  
Vol 661 ◽  
pp. 73-80 ◽  
Author(s):  
Andy Anderson Bery ◽  
Rosli Saad

This paper presents 4-D high resolution electrical resistivity tomography study for slope monitoring using two optimized (modified) arrays of the Wenner-Schlumberger and Pole-Dipole. These optimized resistivity arrays give a total of 2052 number of datum points from each data acquisition set. These two optimized were used because they have more datum points compared to their original arrays. Perhaps these optimized arrays were able to resolve the subsurface structures from surface areas. Inversion results from the computer (mathematical models) suggested that these optimized arrays were able to give in imaging the Earth’s subsurface structures and characterization at different period of time. Furthermore, in this paper, we are presented merging data levels in order to give high resolution in electrical resistivity tomography. Even though the time taken for data acquisition using this technique is twice, the outcome is compromised and reliable which helpful in the Earth’s subsurface interpretation.

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. EN85-EN96 ◽  
Author(s):  
Timothy C. Johnson ◽  
Roelof J. Versteeg ◽  
Mark Rockhold ◽  
Lee D. Slater ◽  
Dimitrios Ntarlagiannis ◽  
...  

Continuing advancements in subsurface electrical resistivity tomography (ERT) are increasing its capabilities for understanding shallow subsurface properties and processes. The inability of ERT imaging data to resolve unique subsurface structures and the corresponding need to include constraining information remains one of the greatest limitations, yet provides one of the greatest opportunities for further advancing the utility of the method. We propose a new method of incorporating constraining information into an ERT imaging algorithm in the form of discontinuous boundaries, known values, and spatial covariance information. We demonstrated the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southeastern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structures derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, indicating a significant improvement in accuracy over the standard regularized inversion and revealing important subsurface structure known to influence flow and transport at the site.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yonatan Garkebo Doyoro ◽  
Ping-Yu Chang ◽  
Jordi Mahardika Puntu ◽  
Ding-Jiun Lin ◽  
Tran Van Huu ◽  
...  

AbstractGeophysical modelling performs to obtain subsurface structures in agreement with measured data. Freeware algorithms for geoelectrical data inversion have not been widely used in geophysical communities; however, different open-source modelling/inversion algorithms were developed in recent years. In this study, we review the structures and applications of openly Python-based inversion packages, such as pyGIMLi (Python Library for Inversion and Modelling in Geophysics), BERT (Boundless Electrical Resistivity Tomography), ResIPy (Resistivity and Induced Polarization with Python), pyres (Python wrapper for electrical resistivity modelling), and SimPEG (Simulation and Parameter Estimation in Geophysics). In addition, we examine the recovering ability of pyGIMLi, BERT, ResIPy, and SimPEG freeware through inversion of the same synthetic model forward responses. A versatile pyGIMLi freeware is highly suitable for various geophysical data inversion. The SimPEG framework is developed to allow the user to explore, experiment with, and iterate over multiple approaches to the inverse problem. In contrast, BERT, pyres, and ResIPy are exclusively designed for geoelectric data inversion. BERT and pyGIMLi codes can be easily modified for the intended applications. Both pyres and ResIPy use the same mesh designs and inversion algorithms, but pyres uses scripting language, while ResIPy uses a graphical user interface (GUI) that removes the need for text inputs. Our numerical modelling shows that all the tested inversion freeware could be effective for relatively larger targets. pyGIMLi and BERT could also obtain reasonable model resolutions and anomaly accuracies for small-sized subsurface structures. Based on the heterogeneous layered model and experimental target scenario results, the geoelectrical data inversion could be more effective in pyGIMLi, BERT, and SimPEG freeware packages. Moreover, this study can provide insight into implementing suitable inversion freeware for reproducible geophysical research, mainly for geoelectrical modelling.


2021 ◽  
Vol 58 (3) ◽  
pp. 109-117
Author(s):  
Ching-Ying TSOU ◽  
Kousei YAMABE ◽  
Daisuke HIGAKI ◽  
Takayoshi SASAGAWA ◽  
Tomo KIRIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document