coastal aquifer
Recently Published Documents


TOTAL DOCUMENTS

952
(FIVE YEARS 234)

H-INDEX

50
(FIVE YEARS 6)

Author(s):  
Soumaya Hajji ◽  
Nabila Allouche ◽  
Salem Bouri ◽  
Awad M. Aljuaid ◽  
Wafik Hachicha

Groundwater (GW) studies have been conducted worldwide with regard to several pressures, including climate change, seawater intrusion, and water overexploitation. GW quality is a very important sector for several countries in the world, in particular for Tunisia. The shallow coastal aquifer of Sfax (located in Tunisia) was found to be under the combined conditions of continuous drop in GW and further deterioration of the groundwater quality (GWQ). This study was conducted to identify the processes that control GWQ mainly in relation to mineralization sources in the shallow Sfax coastal aquifer. To perform this task, 37 wells are considered. Data include 10 physico-chemical properties of groundwater analyzed in water samples: pH, EC, calcium (Ca), sodium (Na), magnesium (Mg), potassium (K), chloride (Cl), sulfate (SO4), bicarbonate (HCO3), and nitrate (NO3), i.e., investigation was based on a database of 370 observations. Principal component analysis (PCA) and hydrochemical facies evolution (HFE) were conducted to extract the main factors affecting GW chemistry. The results obtained using the PCA model show that GWQ is mainly controlled by either natural factors (rock–water interactions) or anthropogenic ones (agricultural and domestic activities). Indeed, the GW overexploitation generated not only the GWQ degradation but also the SWI. The inverse distance weighted (IDW) method, integrated in a geographic information system (GIS), is employed to achieve spatial mapping of seawater intrusion locations. Hydrochemical facies evolution (HFE) results corroborate the seawater intrusion and its spatial distribution. Furthermore, the mixing ratio showed that Jebeniana and Chaffar–Mahares localities are characterized by high SWI hazard. This research should be done to better manage GW resources and help to develop a suitable plan for the exploitation and protection of water resources.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3359
Author(s):  
Mohamed Abdelfattah ◽  
Heba Abdel-Aziz Abu-Bakr ◽  
Ahmed Gaber ◽  
Mohamed H. Geriesh ◽  
Ashraf Y. Elnaggar ◽  
...  

Recently, groundwater resources in Egypt have become one of the important sources to meet human needs and activities, especially in coastal areas such as the western area of Port Said, where seawater desalination cannot be used due to the problem of oil spill and the reliance upon groundwater resources. Thus, the purpose of the study is the sustainable management of the groundwater resources in the coastal aquifer entailing groundwater abstraction. In this regard, the Visual MODFLOW and SEAWAT codes were used to simulate groundwater flow and seawater intrusion in the study area for 50 years (from 2018 to 2068) to predict the drawdown, as well as the salinity distribution due to the pumping of the wells on the groundwater coastal aquifer based on field investigation data and numerical modelling. Different well scenarios were used, such as the change in well abstraction rate, the different numbers of abstraction wells, the spacing between the abstraction wells and the change in screen depth in abstraction. The recommended scenarios were selected after comparing the predicted drawdown and salinity results for each scenario to minimize the seawater intrusion and preserve these resources from degradation.


Sign in / Sign up

Export Citation Format

Share Document