Texture Classification of 3D Surface Textures via Directional Quincunx Lifting

2014 ◽  
Vol 686 ◽  
pp. 82-85
Author(s):  
You Jiao Li ◽  
Tong Sheng Ju ◽  
Meng Gao

This thesis presents a new approach to classify 3D surface textures by using lifting transform with quincunx subsampling. Feature vectors are generated from eight different lifting prediction directions. We classify 3D surface texture images based on minimum Euclidean distance between the test images and the training sets. The feasibility and effectiveness of our proposed approach can be validated by the experimental results.

2005 ◽  
Vol 295-296 ◽  
pp. 437-440 ◽  
Author(s):  
J. Song ◽  
L. Ma ◽  
E. Whitenton ◽  
T. Vorburger

Autocorrelation and cross-correlation functions are proposed for 2D and 3D surface texture comparisons. At the maximum correlation point of the two correlated surface textures, there is a peak shown at the cross-correlation curve. It is proposed to generate a difference function at the maximum correlation point for evaluation of the difference between the two compared surface textures. Based on this method, the National Institute of Standards and Technology (NIST) bullet signature measurement system is developed for the bullet signature measurements of NIST standard bullets.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251309
Author(s):  
Julia Stuhlträger ◽  
Ellen Schulz-Kornas ◽  
Ottmar Kullmer ◽  
Marcel M. Janocha ◽  
Roman M. Wittig ◽  
...  

Dental wear analyses have been widely used to interpret the dietary ecology in primates. However, it remains unclear to what extent a combination of wear analyses acting at distinct temporal scales can be beneficial in interpreting the tooth use of primates with a high variation in their intraspecific dietary ecology. Here, we combine macroscopic tooth wear (occlusal fingerprint analysis, long-term signals) with microscopic 3D surface textures (short-term signals) exploring the tooth use of a historical western chimpanzee population from northeastern Liberia with no detailed dietary records. We compare our results to previously published tooth wear and feeding data of the extant and continually monitored chimpanzees of Taї National Park in Ivory Coast. Macroscopic tooth wear results from molar wear facets of the Liberian population indicate only slightly less wear when compared to the Taї population. This suggests similar long-term feeding behavior between both populations. In contrast, 3D surface texture results show that Liberian chimpanzees have many and small microscopic wear facet features that group them with those Taї chimpanzees that knowingly died during dry periods. This coincides with historical accounts, which indicate that local tribes poached and butchered the Liberian specimens during dust-rich dry periods. In addition, Liberian females and males differ somewhat in their 3D surface textures, with females having more microscopic peaks, smaller hill and dale areas and slightly rougher wear facet surfaces than males. This suggests a higher consumption of insects in Liberian females compared to males, based on similar 3D surface texture patterns previously reported for Taї chimpanzees. Our study opens new options for uncovering details of feeding behaviors of chimpanzees and other living and fossil primates, with macroscopic tooth wear tracing the long-term dietary and environmental history of a single population and microscopic tooth wear addressing short-term changes (e.g. seasonality).


2019 ◽  
Vol 799 ◽  
pp. 71-76
Author(s):  
Oskars Linins ◽  
Ernests Jansons ◽  
Armands Leitans ◽  
Irina Boiko ◽  
Janis Lungevics

The paper is aimed to the methodology for estimation of service life of mechanical engineering components in the case of elastic-plastic contact of surfaces. Well-known calculation methods depending on physics, theory of probability, the analysis of friction pair’ shape and fit include a number of parameters that are difficult or even impossible to be technologically controlled in the manufacturing of mechanical engineering components. The new approach for wear rate estimation using surface texture parameters as well as physical-mechanical properties and geometric parameters of components is proposed. The theoretical part of the calculations is based on the 3D surface texture principles, the basics of material fatigue theory, the theory of elasticity and the contact mechanics of surfaces. It is possible to calculate the service time of the machine, but the process of running-in of the components is relatively short (less than 5%), therefore, the service time is mainly determined by a normal operating period, which also was used to evaluate this period. The calculated input parameters are technologically and metrologically available and new method for calculating the service time can be used in the design process of the equipment. The results of approbation of the method for estimation service time of mechanical engineering, which prove the applicability of mentioned method, are offered as well.


2005 ◽  
Vol 62 (1-2) ◽  
pp. 177-194 ◽  
Author(s):  
Junyu Dong ◽  
Mike Chantler

Sign in / Sign up

Export Citation Format

Share Document