3d surface texture
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251309
Author(s):  
Julia Stuhlträger ◽  
Ellen Schulz-Kornas ◽  
Ottmar Kullmer ◽  
Marcel M. Janocha ◽  
Roman M. Wittig ◽  
...  

Dental wear analyses have been widely used to interpret the dietary ecology in primates. However, it remains unclear to what extent a combination of wear analyses acting at distinct temporal scales can be beneficial in interpreting the tooth use of primates with a high variation in their intraspecific dietary ecology. Here, we combine macroscopic tooth wear (occlusal fingerprint analysis, long-term signals) with microscopic 3D surface textures (short-term signals) exploring the tooth use of a historical western chimpanzee population from northeastern Liberia with no detailed dietary records. We compare our results to previously published tooth wear and feeding data of the extant and continually monitored chimpanzees of Taї National Park in Ivory Coast. Macroscopic tooth wear results from molar wear facets of the Liberian population indicate only slightly less wear when compared to the Taї population. This suggests similar long-term feeding behavior between both populations. In contrast, 3D surface texture results show that Liberian chimpanzees have many and small microscopic wear facet features that group them with those Taї chimpanzees that knowingly died during dry periods. This coincides with historical accounts, which indicate that local tribes poached and butchered the Liberian specimens during dust-rich dry periods. In addition, Liberian females and males differ somewhat in their 3D surface textures, with females having more microscopic peaks, smaller hill and dale areas and slightly rougher wear facet surfaces than males. This suggests a higher consumption of insects in Liberian females compared to males, based on similar 3D surface texture patterns previously reported for Taї chimpanzees. Our study opens new options for uncovering details of feeding behaviors of chimpanzees and other living and fossil primates, with macroscopic tooth wear tracing the long-term dietary and environmental history of a single population and microscopic tooth wear addressing short-term changes (e.g. seasonality).


2021 ◽  
pp. 002203452110056
Author(s):  
A.T. Hara ◽  
D. Elkington-Stauss ◽  
P.S. Ungar ◽  
F. Lippert ◽  
G.J. Eckert ◽  
...  

This in situ erosive tooth wear (ETW) study tested enamel 3-dimensional (3D) surface texture outcomes for the detection and differentiation of ETW lesions simulated in clinically relevant conditions. Twenty participants enrolled in this 3-arm crossover intraoral ETW simulation and wore their own partial denture for 14 d holding 2 human enamel specimens (per arm). In each arm, participants were assigned to 1 of 3 different dental erosion protocols: severe (lemon juice/pH 2.5), moderate (grapefruit juice/pH 3.5), and no erosion (bottled drinking water, control). Enamel specimens were evaluated by white-light scanning confocal profilometry for 3D surface texture and surface loss (ETW model validation). Individual point clouds were analyzed using standard dental microwear texture characterization protocols for surface roughness and anisotropy. Fractal complexity ( Asfc), texture aspect ratio ( Str), and arithmetical mean height ( Sa) values were generated at baseline, 7 d, and 14 d. Data were analyzed by analysis of variance models suitable for the crossover design with repeated measurements, and correlation coefficients were used to examine the relationship between outcomes. Asfc and Sa differentiated ETW severity (no erosion < moderate < severe, P < 0.001) at days 7 and 14. Asfc and Sa were lower at baseline compared to days 7 and 14 ( P < 0.001) for moderate and severe challenges. Asfc increased from day 7 to 14 ( P = 0.042) for the severe challenge. For Str, ETW severity did not have a significant effect overall ( P = 0.15). Asfc and Sa were highly positively correlated ( r = 0.89, P < 0.001), while Asfc and Sa were not correlated overall with Str ( r < 0.1, P ≥ 0.25). Enamel surface loss increased with ETW severity (no erosion < moderate < severe, P < 0.001) at days 7 and 14, validating the ETW simulation model. Complexity ( Asfc) and roughness ( Sa) outcomes were able to detect and differentiate ETW levels, with Asfc being able to monitor the progression of severe lesions. No clear characterization of ETW lesions could be provided by the anisotropy ( Str) parameter.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shlomo Elbahary ◽  
Sohad Haj-yahya ◽  
Majd Khawalid ◽  
Igor Tsesis ◽  
Eyal Rosen ◽  
...  

AbstractThe combination of ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl) has been advocated as an effective irrigation methodology to remove organic and inorganic matter in root canal therapy. Yet, it was suggested that both solutions might lead to structural changes of the dentinal wall surface, depending on the order of application which might affect sealer mechanical retention. This study aims to evaluate the effect of different irrigating protocols on dentin surface roughness using quantitative 3D surface texture analysis. Data stems from 150 human root dentin sections, divided into five groups, each prepared according to one of the following protocols: Negative control; 17% EDTA; 17% EDTA followed by 5.25% NaOCl; 5.25% NaOCl; and 5.25% NaOCl followed by 17% EDTA. Each dentin sample was examined for its three-dimensional surface texture using a high-resolution confocal disc-scanning measuring system. EDTA 17% and the combined EDTA 17% with NaOCl 5.25% showed considerably higher roughness properties compared to the control and to NaOCl 5.25% alone. However, the irrigation sequence did not affect the dentin roughness properties. Therefore, mechanical retention is probably not dependent upon the selection of irrigation protocol sequence.


2020 ◽  
Vol 12 (10) ◽  
Author(s):  
Naomi L. Martisius ◽  
Shannon P. McPherron ◽  
Ellen Schulz-Kornas ◽  
Marie Soressi ◽  
Teresa E. Steele

Abstract Increasingly researchers have employed confocal microscopy and 3D surface texture analysis to assess bone surface modifications in an effort to understand ancient behavior. However, quantitative comparisons between the surfaces of purported archaeological bone tools and experimentally manufactured and used bones are complicated by taphonomic processes affecting ancient bone. Nonetheless, it may be reasonable to assume that bones within the same deposits are altered similarly and thus these alterations are quantifiable. Here we show how unworked bones can be used to quantify the taphonomic effect on bone surfaces and how this effect can then be controlled for and incorporated into an analysis for evaluating the modified surfaces of purported bone tools. To assess the baseline taphonomy of Middle Paleolithic archaeological deposits associated with typologically identified bone artifacts, specifically lissoirs, we directly compare the surface textures of ancient and modern unworked ribs. We then compare the ancient unworked ribs and lissoirs to assess their differences and predict the ancient artifacts’ original surface state using a multilevel multivariate Bayesian model. Our findings demonstrate that three of five tested surface texture parameters (Sa, Spc, and IsT) are useful for distinguishing surface type. Our model predictions show that lissoirs tend to be less rough, have more rounded surface peaks, and exhibit more directionally oriented surfaces. These characteristics are likely due to anthropogenic modifications and would have been more pronounced at deposition. Quantifying taphonomic alterations moves us one step closer to accurately assessing how bone artifacts were made and used in the ancient past.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1095 ◽  
Author(s):  
Zara Khizer ◽  
Muhammad R. Akram ◽  
Rai M. Sarfraz ◽  
Jorabar Singh Nirwan ◽  
Samia Farhaj ◽  
...  

Hydroxypropyl methyl cellulose, HPMC, a hydrophilic polymer, is widely used for the development of extended release hydrophilic matrices and it is also considered as a good contender for the fabrication of 3D printing of matrix tablets. It is often combined with plasticisers to enable extrusion. The aim of the current project was to develop plasticizer-free 3D printed hydrophilic matrices using drug loaded filaments prepared via HME to achieve an in vitro (swelling, erosion and drug release) and in vivo (drug absorption) performance which is analogous to hydrophilic matrix tablets developed through conventional approaches. Additionally, the morphology of the printed tablets was studied using quantitative 3D surface texture studies and the porosity calculated. Filaments were produced successfully and used to produce matrix tablets with acceptable drug loading (95–105%), mechanical and surface texture properties regardless of the employed HPMC grade. The viscosity of HPMC had a discernible impact on the swelling, erosion, HPMC dissolution, drug release and pharmacokinetic findings. The highest viscosity grade (K100M) results in higher degree of swelling, decreased HPMC dissolution, low matrix erosion, decreased drug release and extended drug absorption profile. Overall, this study demonstrated that the drug loaded (glipizide) filaments and matrix tablets of medium to high viscosity grades of HPMC, without the aid of plasticisers, can be successfully prepared. Furthermore, the in vitro and in vivo studies have revealed the successful fabrication of extended release matrices.


2019 ◽  
Vol 799 ◽  
pp. 71-76
Author(s):  
Oskars Linins ◽  
Ernests Jansons ◽  
Armands Leitans ◽  
Irina Boiko ◽  
Janis Lungevics

The paper is aimed to the methodology for estimation of service life of mechanical engineering components in the case of elastic-plastic contact of surfaces. Well-known calculation methods depending on physics, theory of probability, the analysis of friction pair’ shape and fit include a number of parameters that are difficult or even impossible to be technologically controlled in the manufacturing of mechanical engineering components. The new approach for wear rate estimation using surface texture parameters as well as physical-mechanical properties and geometric parameters of components is proposed. The theoretical part of the calculations is based on the 3D surface texture principles, the basics of material fatigue theory, the theory of elasticity and the contact mechanics of surfaces. It is possible to calculate the service time of the machine, but the process of running-in of the components is relatively short (less than 5%), therefore, the service time is mainly determined by a normal operating period, which also was used to evaluate this period. The calculated input parameters are technologically and metrologically available and new method for calculating the service time can be used in the design process of the equipment. The results of approbation of the method for estimation service time of mechanical engineering, which prove the applicability of mentioned method, are offered as well.


2019 ◽  
Vol 116 (4) ◽  
pp. 1325-1330 ◽  
Author(s):  
Daniela E. Winkler ◽  
Ellen Schulz-Kornas ◽  
Thomas M. Kaiser ◽  
Annelies De Cuyper ◽  
Marcus Clauss ◽  
...  

Recent studies have shown that phytoliths are softer than dental enamel but still act as abrasive agents. Thus, phytolith content should be reflected in dental wear. Because native phytoliths show lower indentation hardness than phytoliths extracted by dry ashing, we propose that the hydration state of plant tissue will also affect dental abrasion. To assess this, we performed a controlled feeding experiment with 36 adult guinea pigs, fed exclusively with three different natural forages: lucerne, timothy grass, and bamboo with distinct phytolith/silica contents (lucerne < grass < bamboo). Each forage was fed in fresh or dried state for 3 weeks. We then performed 3D surface texture analysis (3DST) on the upper fourth premolar. Generally, enamel surface roughness increased with higher forage phytolith/silica content. Additionally, fresh and dry grass feeders displayed differences in wear patterns, with those of fresh grass feeders being similar to fresh and dry lucerne (phytolith-poor) feeders, supporting previous reports that “fresh grass grazers” show less abrasion than unspecialized grazers. Our results demonstrate that not only phytolith content but also properties such as water content can significantly affect plant abrasiveness, even to such an extent that wear patterns characteristic for dietary traits (browser–grazer differences) become indistinguishable.


Sign in / Sign up

Export Citation Format

Share Document