Flight Attitude Sliding Mode Control Design Based on the Compensation of Extended State Observer

2014 ◽  
Vol 716-717 ◽  
pp. 1689-1693
Author(s):  
Hai Long Xing ◽  
Juan Li

This paper proposes the sliding mode control design based on extended state observer control approch for the flight attitude system.The extended state observer (ESO) with new structure is used to estimate the total disturbance and to compensate the control object so that the flight attitude system can be simplified. Then a sliding mode controller is used to stabilize this simplified system. Finally, a numerical simulation shows the effectiveness of the proposed control design method.

Author(s):  
Wangyong He ◽  
Sanqiu Liu ◽  
Zhen Zhao ◽  
Kui Jie ◽  
◽  
...  

Aiming at a high-precision tracking performance of the control of a machine tool moving axis, this study established a system mathematical model considering the elastic deformation of the ball screw. Then, a sliding mode controller was designed to suppress the influence of uncertainty on the control performance. Next, an extended state observer was designed to observe the system state and disturbance and provide feedback to the sliding mode controller for position control. Finally, the correctness of the designed sliding mode control and extended state observer were proved by MATLAB simulation analysis.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098603
Author(s):  
Daoxiong Gong ◽  
Mengyao Pei ◽  
Rui He ◽  
Jianjun Yu

Pneumatic artificial muscles (PAMs) are expected to play an important role in endowing the advanced robot with the compliant manipulation, which is very important for a robot to coexist and cooperate with humans. However, the strong nonlinear characteristics of PAMs hinder its wide application in robots, and therefore, advanced control algorithms are urgently needed for making the best use of the advantages and bypassing the disadvantages of PAMs. In this article, we propose a full-order sliding mode control extended state observer (fSMC-ESO) algorithm that combines the ESO and the fSMC for a robotic joint actuated by a pair of antagonistic PAMs. The fSMC is employed to eliminate the chattering and to guarantee the finite-time convergence, and the ESO is adopted to observe both the total disturbance and the states of the robot system, so that we can inhibit the disturbance and compensate the nonlinearity efficiently. Both simulations and physical experiments are conducted to validate the proposed method. We suggest that the proposed method can be applied to the robotic systems actuated by PAMs and remarkably improve the performance of the robot system.


2011 ◽  
Vol 19 (10) ◽  
pp. 2409-2418
Author(s):  
马晓军 MA Xiao-jun ◽  
袁东 YUAN Dong ◽  
李匡成 LI Kuang-cheng ◽  
魏曙光 WEI Shu-guang

Sign in / Sign up

Export Citation Format

Share Document