Рассматривается структура системы информационной поддержки процессов принятия решений оператором АЭС в оперативных условиях. Анализируются функциональные возможности системы информационной поддержки оператора (СИПО) на примере Нововоронежской атомной электростанции (НВ АЭС). Данная система дает возможность оператору, управляющему распределенным комплексом технологических объектов АЭС, проводить качественный анализ и обработку больших объемов сложностpуктурированной информации и принимать своевременные адекватные решения в темпе реального времени. Кроме того, рассматривается объект управления и его структура, приводятся рекомендации, направленные на увеличение функциональных возможностей СИПО на базе искусственных нейронных сетей. Одной из многочисленных функций СИПО является прогнозирование состояния объекта управления на основе реализации программно-технологического комплекса модели энергоблока (ПТК МЭ). Однако существующая модель не способна учесть все факторы, влияющие на производственный процесс. Альтернативой здесь выступает искусственная нейронная сеть, которая в процессе обучения может сформировать искомые зависимости между большим числом параметров объекта управления и получить более полный и достоверный прогноз. Предложена структура искусственной нейронной сети на базе нечёткой системы вывода, которая реализует возможности нейронных сетей и нечеткой логики
We considered the structure of the information support system for decision-making by the NPP operator in operational conditions. We analyzed the functional capabilities of the operator information support system (SIPO) using the example of the Novovoronezh nuclear power plant (NV NPP). This system provides the operator managing the distributed complex of NPP technological facilities to carry out high-quality analysis and processing of large volumes of complex structured information and make timely adequate decisions in real time. In addition, we considered the control object and its structure and made recommendations aimed at increasing the functionality of the SIPO based on artificial neural networks. One of the many functions of the SIPO is to predict the state of the control object based on the implementation of the software and technological complex of the power unit model. However, the existing model is not able to take into account all the factors influencing the production process. An alternative here is an artificial neural network, which in the learning process can form the required dependencies between a large number of parameters of the control object and get a more complete and reliable forecast. The proposed structure of an artificial neural network based on a fuzzy inference system, which implements the capabilities of neural networks and fuzzy logic