Acid Resistance of Oil Palm Shell Lightweight Aggregate Concrete Containing Palm Oil Fuel Ash

2015 ◽  
Vol 754-755 ◽  
pp. 326-330 ◽  
Author(s):  
Khairunisa Muthusamy ◽  
Nurazzimah Zamri ◽  
Iqbal Mohd Haniffa ◽  
Noor Nabilah Sarbini ◽  
Fadzil Mat Yahaya

Concern towards reducing waste disposed by Malaysian palm oil industry, palm oil fuel ash (POFA) and oil palm shell (OPS) that poses negative impact to the environment has initiated research on producing oil palm shell lightweight aggregate concrete (OPS LWAC) containing palm oil fuel ash. The present investigation looks into the effect of palm oil fuel ash content as partial cement replacement to compressive strength and acid resistance of oil palm shell lightweight aggregate concrete. Two types of mix, plain OPS LWAC and another one containing POFA as partial cement replacement have been used in this research. Cubes of 100 x 100 x 100 (mm) were water cured for 28 days before subjected to compressive strength test and acid resistance test. The findings indicate that suitable integration of POFA content would ensure occurrence of optimum pozzolanic reaction leading to densification of concrete internal structure which increases the compressive strength and better durability to acid attack. Integration of 20% POFA successfully assist concrete to achieve the highest compressive strength and exhibit superior resistance against acid attack compared to other mixes.

2015 ◽  
Vol 125 ◽  
pp. 804-810 ◽  
Author(s):  
Khairunisa Muthusamy ◽  
Nurazzimah Zamri ◽  
Mohammad Amirulkhairi Zubir ◽  
Andri Kusbiantoro ◽  
Saffuan Wan Ahmad

2014 ◽  
Vol 567 ◽  
pp. 446-450 ◽  
Author(s):  
Khairunisa Muthusamy ◽  
Zamri Nurazzimah

Today, the necessity of environmental awareness and enforcement is more demanding and crucial than ever before. Environmental protection encompasses not only pollution but also sustainable development and conservation of natural resources and the eco-system. As a conclusion, protection and preservation of environment is still a pressing issue. This issue on environmental preservations and sustainability all over the world has lead to innovations of new material using by-products generated from various sectors such as palm oil industry. One of the potential recycle materials from palm oil industry is palm oil fuel ash which contains siliceous compositions and reacted as pozzolans to produce a stronger and denser concrete. Palm oil fuel ash (POFA) is by-product obtained by burning of fibers, shells and empty fruit bunches as fuel in palm oil mill boilers. Apart from POFA, oil palm shell (OPS), which also from oil palm waste has been used as lightweight aggregates resulting from never ending research conducted. In this investigation, these two types of waste were collected from the same palm oil mills in Kuantan, Malaysia and were both utilized inside lightweight aggregate concrete. By incorporating POFA and OPS as partial cement and coarse aggregate replacement, lightweight aggregate concrete with 35 MPa can be produced and is also significantly higher than control OPS concrete.


RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 32058-32068
Author(s):  
Sunisa Chuayjumnong ◽  
Seppo Karrila ◽  
Saysunee Jumrat ◽  
Yutthapong Pianroj

In this study, the effects of two microwave absorbers (MWAb) or catalysts, namely activated carbon (AC) and palm oil fuel ash (POFA), were investigated in microwave pyrolysis of oil palm shell (OPS).


2016 ◽  
Vol 115 ◽  
pp. 307-314 ◽  
Author(s):  
Mohammad Momeen Ul Islam ◽  
Kim Hung Mo ◽  
U. Johnson Alengaram ◽  
Mohd Zamin Jumaat

Author(s):  
Saysunee Jumrat ◽  
Teerasak Punvichai ◽  
Wichuta Sae-jie ◽  
Seppo Karrila ◽  
Yutthapong Pianroj

Abstract The important parameters characterizing microwave pyrolysis kinetics, namely the activation energy (E a) and the rate constant pre-exponential factor (A), were investigated for oil palm shell mixed with activated carbon and palm oil fuel ash as microwave absorbers, using simple lab-scale equipment. These parameters were estimated for the Kissinger model. The estimates for E a ranged within 31.55–58.04 kJ mol−1 and for A within 6.40E0–6.84E+1 s−1, in good agreement with prior studies that employed standard techniques: Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The E a and A were used with the Arrhenius reaction rate equation, solved by the 4th order Runge-Kutta method. The statistical parameters coefficient of determination (R 2) and root mean square error (RMSE) were used to verify the good fit of simulation to the experimental results. The best fit had R 2 = 0.900 and RMSE = 4.438, respectively, for MW pyrolysis at power 440 W for OPS with AC as MW absorber.


Sign in / Sign up

Export Citation Format

Share Document