The Boiler Temperature Field Reconstruction Algorithm Based on Genetic Algorithm

2011 ◽  
Vol 88-89 ◽  
pp. 269-273
Author(s):  
Cheng Zhi Li ◽  
Fu Qun Shao ◽  
Zhe Kan ◽  
Hai Xiang Fan

The traditional power station boiler temperature field reconstruction algorithm is sensitive to the time of flight. In the boiler movement, the temperature field has symmetric distribution feature within the boiler. On the basis of the boiler temperature field reconstruction fundamental by using the acoustic method, the paper presents a new two dimension temperature field reconstruction algorithm, which combines the single path method and genetic algorithm. Firstly, the algorithm makes sure the temperature distribution by using single path function. It uses the points denote the temperatures on each path, and plots the mesh, which can represent the temperature preliminary distribution, by using the Bezier spline principle and linear multistep integration. Finally, the surface mesh is Interpolated and fitted by using genetic algorithm. The experimental result proved that, compared to the least square method, the new reconstruction algorithm has the feature of higher accuracy and higher reconstruction speed.

2014 ◽  
Vol 902 ◽  
pp. 167-172 ◽  
Author(s):  
Yan Chen ◽  
Ke Bao Xu ◽  
Shou Shan Liu

Acoustic Pyrometry enables non-intrusive, accurate, reliable gas temperature measurements which can be used for controlling operations on real-time basis, therefore, it particularly applies to hot zones and extremely harsh environments. In the application study on multiple acoustic paths intersection in temperature field measurement, two key techniques that time of flight (TOF) of acoustic waves measurement and temperature field reconstruction were involved. This paper introduces the development of Acoustic Pyrometry, and then focus on two key techniques. The cross-correlation algorithm to calculate the TOF and least-square method for temperature field reconstruction are presented. The advantages and limitations of these techniques are also discussed. Several emerging questions are proposed.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuhui Wu ◽  
Xinzhi Zhou ◽  
Li Zhao ◽  
Chenlong Dong ◽  
Hailin Wang

Acoustic tomography (AT), as a noninvasive temperature measurement method, can achieve temperature field measurement in harsh environments. In order to achieve the measurement of the temperature distribution in the furnace and improve the accuracy of AT reconstruction, a temperature field reconstruction algorithm based on the radial basis function (RBF) interpolation method optimized by the evaluation function (EF-RBFI for short) is proposed. Based on a small amount of temperature data obtained by the least square method (LSM), the RBF is used for interpolation. And, the functional relationship between the parameter of RBF and the root-mean-square (RMS) error of the reconstruction results is established in this paper, which serves as the objective function for the effect evaluation, so as to determine the optimal parameter of RBF. The detailed temperature description of the entire measured temperature field is finally established. Through the reconstruction of three different types of temperature fields provided by Dongfang Boiler Works, the results and error analysis show that the EF-RBFI algorithm can describe the temperature distribution information of the measured combustion area globally and is able to reconstruct the temperature field with high precision.


Sign in / Sign up

Export Citation Format

Share Document