Reliability Assessment of Power System Using Importance Sampling Technique Based on Layer Optimization Simulation

2011 ◽  
Vol 88-89 ◽  
pp. 554-558 ◽  
Author(s):  
Bin Wang

An improved importance sampling method with layer simulation optimization is presented in this paper. Through the solution sequence of the components’ optimum biased factors according to their importance degree to system reliability, the presented technique can further accelerate the convergence speed of the Monte-Carlo simulation. The idea is that the multivariate distribution’ optimization of components in power system is transferred to many steps’ optimization based on importance sampling method with different optimum biased factors. The practice is that the components are layered according to their importance degree to the system reliability before the Monte-Carlo simulation, the more forward, the more important, and the optimum biased factors of components in the latest layer is searched while the importance sampling is carried out until the demanded accuracy is reached. The validity of the presented is verified using the IEEE-RTS79 test system.

Author(s):  
Amandeep Singh ◽  
Zissimos P. Mourelatos ◽  
Efstratios Nikolaidis

Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. The reliability usually degrades with time increasing the lifecycle cost due to potential warranty costs, repairs and loss of market share. Reliability is the probability that the system will perform its intended function successfully for a specified time. In this article, we consider the first-passage reliability which accounts for the first time failure of non-repairable systems. Methods are available which provide an upper bound to the true reliability which may overestimate the true value considerably. The traditional Monte-Carlo simulation is accurate but computationally expensive. A computationally efficient importance sampling technique is presented to calculate the cumulative probability of failure for random dynamic systems excited by a stationary input random process. Time series modeling is used to characterize the input random process. A detailed example demonstrates the accuracy and efficiency of the proposed importance sampling method over the traditional Monte Carlo simulation.


Author(s):  
Y.-J. Chan ◽  
D. J. Ewins

A new procedure is developed to find the probabilities of extremely high amplification factors in mistuned bladed disk vibration levels, typical of events which occur rarely. While a rough estimate can be made by curve-fitting the distribution function generated in a Monte Carlo simulation, the procedure presented here can determine a much more accurate upper bound and the probabilities of amplification factors near to that bound. The procedure comprises an optimization analysis based on the conjugate gradient method and a stochastic simulation using the importance sampling method. Two examples are provided to illustrate the efficiency of the procedure, which can be 2 or 3 orders of magnitude more efficient than Monte Carlo simulations.


Author(s):  
Takayuki Shiina ◽  

We consider the stochastic programming problem with recourse in which the expectation of the recourse function requires a large number of function evaluations, and its application to the capacity expansion problem. We propose an algorithm which combines an L-shaped method and a Monte Carlo method. The importance sampling technique is applied to obtain variance reduction. In the previous approach, the recourse function is approximated as an additive form in which the function is separable in the components of the stochastic vector. In our approach, the approximate additive form of the recourse function is perturbed to define the new density function. Numerical results for the capacity expansion problem are presented.


Sign in / Sign up

Export Citation Format

Share Document