Magnetism and Half-Metallicity in (100) Surface of Inverse Heusler Mn2CoSb

2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.

RSC Advances ◽  
2017 ◽  
Vol 7 (50) ◽  
pp. 31707-31713 ◽  
Author(s):  
Y. Li ◽  
G. D. Liu ◽  
X. T. Wang ◽  
E. K. Liu ◽  
X. K. Xi ◽  
...  

Using first-principles calculations based on density-functional theory, the structural, electronic and magnetic properties in the bulk and (001) surfaces of quaternary Heusler compounds NbFeCrAl and NbFeVGe are investigated.


2015 ◽  
Vol 754-755 ◽  
pp. 766-769
Author(s):  
A. Chik ◽  
S. Saad ◽  
F. Che Pa ◽  
C.K. Yeoh ◽  
R.M. Zaki

The magnetic properties of the perovskite manganites LaMnO3(LMO) and La2/3Al1/3MnO3(LAMO) was presented. The calculations were made within density functional theory and generalized-gradient approximation (GGA) exchange correlations energy. It was found that LAMO exhibit magnetic properties and stabilizes in antiferromagnetic structure. However cell magnetization and magnetic moments reduce with inclusion of Al dopant.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


2017 ◽  
Vol 19 (42) ◽  
pp. 28928-28935 ◽  
Author(s):  
Ya Yang ◽  
Jihua Zhang ◽  
Shunbo Hu ◽  
Yabei Wu ◽  
Jincang Zhang ◽  
...  

First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga2O3 in the presence of cation vacancies.


Author(s):  
S. Belhachi ◽  
S. Amari ◽  
B. Bouhafs

We present first-principles calculations of the structural, electronic and magnetic properties of Gd-doped [Formula: see text] based on the density functional theory within [Formula: see text] schemes. It is found that Gd atom favors substituting for Al site. Compared with undoped [Formula: see text], the Gd-doped [Formula: see text] has become an indirect band gap semiconductor of reduced band gap. The magnetic moment [Formula: see text] per molecule mainly comes from Gd ion with little contribution from the Ga, Al and N atoms. It is confirmed that the ferromagnetic configuration is stable for [Formula: see text]. It is found also that there is hybridization between the forbital of the Gd atom and the [Formula: see text] orbital of the N atom.


2020 ◽  
Vol 05 (02) ◽  
pp. 2030001
Author(s):  
Yunxuan Zhou ◽  
Wei Yu ◽  
Asim Khan ◽  
Xiaoyu Chong ◽  
Jing Feng

The thermal, mechanical, catalytic and adsorptive properties, etc. are the key factors dominating the applied field of precious metal materials. High temperature alloys doped by precious metal elements have high strength, excellent room temperature, high temperature oxidation resistance and corrosion resistance, excellent in fatigue resistance, good long-term stability, which applies in many fields, such as industrial catalyst, coating materials and medical biological etc. The structural, electronic, elastic, adsorptive, catalytic and magnetic properties of the precious metal materials are summarized systemically via first-principles calculations based on density functional theory. Moreover, the density functional theory has been introduced which provided theoretical support for subsequent analysis. In this review, recent advances of calculating the electronic and mechanical properties of pure, binary and ternary precious metal materials via first-principles calculations methods are concluded comprehensively. Lastly, conclusion and outlook are assessed briefly to further refine calculation of precious metal materials and provided guidance for experiment and its application.


2014 ◽  
Vol 783-786 ◽  
pp. 2419-2422
Author(s):  
Jing Bai ◽  
Jean M. Raulot ◽  
Yu Dong Zhang ◽  
Claude Esling ◽  
Xiang Zhao ◽  
...  

The magnetic properties of the off-stoichiometric Ni2XIn (X=Mn, Fe, Co) are systematically investigated by means of the first–principles calculations within the framework of the density functional theory (DFT) using the Vienna ab initio software package (VASP). The magnitude of the variation in the Ni moments is much larger than that of Mn in the defective Ni2XIn. The value of the Ni magnetic moment sensitively depends on the distance between Ni and X.


2015 ◽  
Vol 17 (27) ◽  
pp. 17957-17961 ◽  
Author(s):  
Jun Dai ◽  
Xiao Cheng Zeng

We predict some novel electronic and magnetic properties of a functionalized silicene sheet by nitrophenyl diazonium (NPD) using first-principles calculations in the framework of density functional theory with dispersion corrections.


2021 ◽  
Author(s):  
H. R. Mahida ◽  
Deobrat Singh ◽  
Yogesh Sonvane ◽  
Sanjeev K. Gupta ◽  
P. B. Thakor ◽  
...  

In the present study, we have investigated the structural, electronic, and charge transport properties of pristine, hydrogenated, and oxidized Si2BN monolayers via first-principles calculations based on density functional theory (DFT).


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


Sign in / Sign up

Export Citation Format

Share Document