Physical and Electrical Properties of Lead-Free (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 Ceramics

2011 ◽  
Vol 239-242 ◽  
pp. 3240-3243 ◽  
Author(s):  
Chun Huy Wang

Extending the investigations on (Bi0.5Na0.5)TiO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3[BNT-BKT]. (Bi0.5Na0.5)TiO3with 7~ 30 mol% (Bi0.5K0.5)TiO3ceramics have been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between rhombohedral (R) and tetragonal (T) was found at the composition 0.82BNT-0.18BKT with correspondingly enhanced piezoelectric properties. The electromechanical planar coupling factor is higher for compositions near the MPB. The mechanical quality factor (Qm), planar coupling coefficient (kp) and thickness coupling coefficient (kt) of 0.82BNT-0.18BKT ceramics were 125, 28.8% and 47.4%, respectively.

2011 ◽  
Vol 211-212 ◽  
pp. 152-155
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.85K0.15)0.5TiO3[NKN-BNKT]. (Na0.5K0.5)NbO3with 2 ~ 6 mol% Bi0.5(Na0.85K0.15)0.5TiO3has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and hexagonal (H) was found at the composition 0.96NKN-0.04BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.96NKN-0.04BNKT ceramics were 1273, 34% and 38%, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 1351-1354
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.93K0.07)0.5TiO3 [NKN-BNKT]. (Na0.5K0.5)NbO3 with 2 ~ 6 mol% Bi0.5(Na0.93K0.07)0.5TiO3 has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and rhombohedral (R) was found at the composition 0.98NKN-0.02BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.98NKN-0.02BNKT ceramics were 1040, 47% and 48%, respectively.


2011 ◽  
Vol 230-232 ◽  
pp. 12-15
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.80K0.20)0.5TiO3[NKN-BNKT]. (Na0.5K0.5)NbO3with 2 ~ 6 mol% Bi0.5(Na0.80K0.20)0.5TiO3has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and tetragonal (T) was found at the composition 0.97NKN-0.03BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (εr), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.97NKN-0.03BNKT ceramics were 1483, 32% and 31%, respectively.


2014 ◽  
Vol 602-603 ◽  
pp. 791-794
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3Bi0.5(Na0.90K0.10)0.5TiO3 [NKN-BNK. (Na0.5K0.5)NbO3 with 1 ~ 5 mol% Bi0.5(Na0.90K0.10)0.5TiO3 has been prepared following the conventional mixed oxide process. It can be concluded that the NKN-BNKT ceramics have orthorhombic structures in the case x 0.03. With increasing BNKT content (x=0.04 to 0.05), however, the structure changes from orthorhombic to rhombohedral phase. Above results demonstrated that the MPB between orthorhombic and rhombohedral phases exits in the solid solution with the BNKT content of x=0.03. At the MPB composition, the cryctalline structure of ceramics is considered to be a coexistence of orthorhombic and rhombohedral phase. Owing to the phase coexistence at the phase boundary, there exists a different symmetry regions (DSR) near the MPB. The DSR boundary motion increases the dielectric permittivity and piezoelectric coefficients. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp), thickness coupling coefficient (kt) and piezoelectric constant (d33)of 0.98NKN-0.02BNKT ceramics were 1180, 30%, 58%, and 180, respectively.


2012 ◽  
Vol 05 (02) ◽  
pp. 1260013
Author(s):  
TAKESHI KIMURA ◽  
SHU YIN ◽  
TAKATOSHI HASHIMOTO ◽  
ATUSHI SASAKI ◽  
YUICHI TOKANO ◽  
...  

High purity ( Ba 1-x Ca x)( Ti 1-y Zr y) O 3((x,y)=(0.00,0.00)–(0.50,0.50)) were synthesized by a composite-hydroxide-mediated approach at 200°C using a sealed tube with a rolling system. The powders with an average size of 50 nm in diameter and narrow size distribution were produced. The highest electromechanical coupling factor k r was 36.1% ((x,y) = (0.05,0.03)) and highest mechanical quality factor Q m was 256 ((x,y) = (0.11,0.13)).


2012 ◽  
Vol 487 ◽  
pp. 770-774
Author(s):  
Wei Ye Chen ◽  
Lan Zhu ◽  
Peng Yi Liu ◽  
Cai Ping Lin ◽  
Hao Jian Tu

The effects of NiO-doping on the microstructure and piezoelectric properties of PMSZT ceramics were investigated. The experimental results indicate that pure perovskite structure was obtained in the doping range. With the increasing of doping amounts, phases shift from tetragonal phase to rhombohedral phase. The mechanical quality factor (Qm) , Dielectric constant (εr) , electromechanical coupling factor (Kp) and piezoelectric constant (d33) increase with the increasing of doping amounts and then decrease, whereas, dielectric loss (tanδ) decrease and then increase. The ceramics with doping amount of 0.1wt.% sintered at 980 °C have the optim properties of Qm=1345, εr=1853, Kp=0.62, d33=375 and tanδ=0.21%。


2008 ◽  
Vol 47 (9) ◽  
pp. 7678-7684 ◽  
Author(s):  
Satoshi Wada ◽  
Momoyo Nitta ◽  
Nobuhiro Kumada ◽  
Daisuke Tanaka ◽  
Masahito Furukawa ◽  
...  

2011 ◽  
Vol 239-242 ◽  
pp. 486-489
Author(s):  
Ling Fang Xu ◽  
Wen Chen ◽  
Jing Zhou ◽  
Chang Ping Yang

Niobium doped Pb(Zr,Ti)O3fiber/epoxy resin 1-3 composites with different ceramic volume fraction of 10-85% were fabricated by filling-casting method. Effects of ceramic volume fraction on electric properties were investigated. For a typical 30% ceramic content composite, the thickness coupling coefficientkt, mechanical quality factorQm, acoustic impedanceZmand anisotropic propertykt/kpwere 0.67, 0.55, 11.03 MRayl and 2.23, respectively.


Sign in / Sign up

Export Citation Format

Share Document