coupling factor
Recently Published Documents


TOTAL DOCUMENTS

1190
(FIVE YEARS 146)

H-INDEX

61
(FIVE YEARS 5)

Author(s):  
Ghislain Raze ◽  
Jennifer Dietrich ◽  
Gaetan Kerschen

The stability of a piezoelectric structure controlled by a digital vibration absorber emulating a shunt circuit is investigated in this work. The formalism of feedback control theory is used to demonstrate that systems with a low electromechanical coupling are prone to delay-induced instabilities entailed by the sampling procedure of the digital unit. An explicit relation is derived between the effective electromechanical coupling factor and the maximum sampling period guaranteeing a stable controlled system. Since this sampling period may be impractically small, a simple modification procedure of the emulated admittance of the shunt circuit is proposed in order to counteract the effect of delays by anticipation. The theoretical developments are experimentally validated on a clamped-free piezoelectric beam.


Author(s):  
Yudai Fujii ◽  
Takumi Fujimaki ◽  
Masashi Suzuki ◽  
Shoji Kakio

Abstract The propagation and resonance properties of longitudinal leaky surface acoustic waves (LLSAWs) on bonded structures consisting of a quartz (Qz) thin plate and a Qz support substrate with different Euler angles were investigated theoretically. By using both an X-cut Qz thin plate and a Qz support substrate with optimal Euler angles, we obtained LLSAWs with a larger coupling factor, a smaller attenuation, and a lower temperature coefficient of frequency than those on a single Qz substrate. Furthermore, from the resonance properties simulated by the finite element method, the bonded structures were found to exhibit a large admittance ratio and a high quality factor, which could not be obtained when using a single Qz substrate; the bandwidth however was as small as 0.016-0.086%.


Author(s):  
Masashi Suzuki ◽  
Shoji Kakio

Abstract Piezoelectricity of YbAlN films has recently been shown to be almost as high as that of ScAlN films. YbAlN film surface acoustic wave (SAW) resonators are expected to have a high coupling factor. We theoretically investigated the propagation characteristics of first-mode Rayleigh SAWs (RSAWs) on Yb0.33Al0.67N film/high-velocity Si, sapphire, AlN, SiC, BN, and diamond substrates. The first-mode RSAWs on the YbAlN layered structures had high coupling factors, higher than those on ScAlN layered structures. An enhancement of the effective coupling factor of the first mode RSAWs was observed in polarity inverted YbAlN film/BN or diamond substrate structures.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Unsub Zia ◽  
Mark McCartney ◽  
Bryan Scotney ◽  
Jorge Martinez ◽  
Ali Sajjad

AbstractPseudo-random number generators (PRNGs) are one of the building blocks of cryptographic methods and therefore, new and improved PRNGs are continuously developed. In this study, a novel method to generate pseudo-random sequences using coupled map lattices is presented. Chaotic maps only show their chaotic behaviour for a specified range of control parameters, what can restrict their application in cryptography. In this work, generalised symmetric maps with adaptive control parameter are presented. This novel idea allows the user to choose any symmetric chaotic map, while ensuring that the output is a stream of independent and random sequences. Furthermore, to increase the complexity of the generated sequences, a lattice-based structure where every local map is linked to its neighbouring node via coupling factor has been used. The dynamic behaviour and randomness of the proposed system has been studied using Kolmogorov–Sinai entropy, bifurcation diagrams and the NIST statistical suite for randomness. Experimental results show that the proposed PRNG provides a large key space, generates pseudo-random sequences and is computationally suitable for IoT devices.


2021 ◽  
Vol 11 (1) ◽  
pp. 57-65
Author(s):  
Cong Luo ◽  
Tomoaki Karaki ◽  
Zhuangkai Wang ◽  
Yiqin Sun ◽  
Yohachi Yamashita ◽  
...  

AbstractAfter field cooling (FC) alternating current poling (ACP), we investigated the dielectric and piezoelectric properties of [001]pc-oriented 0.24Pb(In1/2Nb1/2)O3 (PIN)-0.46Pb(Mg1/3Nb2/3)O3 (PMN)-0.30PbTiO3 (PT) (PIMN-0.30PT) single crystals (SCs), which were manufactured by continuous-feeding Bridgman (CF BM) within morphotropic phase boundary (MPB) region. By ACP with 4 kVrms/cm from 100 to 70 °C, the PIMN-0.30PT SC attained high dielectric permittivity (ε33T/ε0) of 8330, piezoelectric coefficient (d33) of 2750 pC/N, bar mode electromechanical coupling factor k33 of 0.96 with higher phase change temperature (Tpc) of 103 °C, and high Curie temperature (TC) of 180 °C. These values are the highest ever reported as PIMN-xPT SC system with Tpc > 100 °C. The enhancement of these properties is attributed to the induced low symmetry multi-phase supported by phase analysis. This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMN-xPT, and provides a route to a wide range of piezoelectric device applications.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Menka Drost ◽  
Eleonora Diamanti ◽  
Kathrin Fuhrmann ◽  
Adriely Goes ◽  
Atanaz Shams ◽  
...  

Liposomes have been studied for decades as nanoparticulate drug delivery systems for cytostatics, and more recently, for antibiotics. Such nanoantibiotics show improved antibacterial efficacy compared to the free drug and can be effective despite bacterial recalcitrance. In this work, we present a loading method of bacteriomimetic liposomes for a novel, hydrophobic compound (HIPS5031) inhibiting energy-coupling factor transporters (ECF transporters), an underexplored antimicrobial target. The liposomes were composed of DOPG (18:1 (Δ9-cis) phosphatidylglycerol) and CL (cardiolipin), resembling the cell membrane of Gram-positive Staphylococcus aureus and Streptococcus pneumoniae, and enriched with cholesterol (Chol). The size and polydispersity of the DOPG/CL/± Chol liposomes remained stable over 8 weeks when stored at 4 °C. Loading of the ECF transporter inhibitor was achieved by thin film hydration and led to a high encapsulation efficiency of 33.19% ± 9.5% into the DOPG/CL/Chol liposomes compared to the phosphatidylcholine liposomes (DMPC/DPPC). Bacterial growth inhibition assays on the model organism Bacillus subtilis revealed liposomal HIPS5031 as superior to the free drug, showing a 3.5-fold reduction in CFU/mL at a concentration of 9.64 µM. Liposomal HIPS5031 was also shown to reduce B. subtilis biofilm. Our findings present an explorative basis for bacteriomimetic liposomes as a strategy against drug-resistant pathogens by surpassing the drug-formulation barriers of innovative, yet unfavorably hydrophobic, antibiotics.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8447
Author(s):  
Eyglis Ledesma ◽  
Ivan Zamora ◽  
Arantxa Uranga ◽  
Francesc Torres ◽  
Núria Barniol

In this paper, guidelines for the optimization of piezoelectrical micromachined ultrasound transducers (PMUTs) monolithically integrated over a CMOS technology are developed. Higher acoustic pressure is produced by PMUTs with a thin layer of AlN piezoelectrical material and Si3N4 as a passive layer, as is studied here with finite element modeling (FEM) simulations and experimental characterization. Due to the thin layers used, parameters such as residual stress become relevant as they produce a buckled structure. It has been reported that the buckling of the membrane due to residual stress, in general, reduces the coupling factor and consequently degrades the efficiency of the acoustic pressure production. In this paper, we show that this buckling can be beneficial and that the fabricated PMUTs exhibit enhanced performance depending on the placement of the electrodes. This behavior was demonstrated experimentally and through FEM. The acoustic characterization of the fabricated PMUTs shows the enhancement of the PMUT performance as a transmitter (with 5 kPa V−1 surface pressure for a single PMUT) and as a receiver (12.5 V MPa−1) in comparison with previously reported devices using the same MEMS-on-CMOS technology as well as state-of-the-art devices.


2021 ◽  
pp. 1-8
Author(s):  
Wenlong Liao ◽  
Chaohui He ◽  
Huan He ◽  
Shang Tian ◽  
Yurong Bai

Author(s):  
Danilo G. Afonso ◽  
Gaetano Siciliano

In this paper, we study a Schrödinger–Bopp–Podolsky (SBP) system of partial differential equations in a bounded and smooth domain of [Formula: see text] with a nonconstant coupling factor. Under a compatibility condition on the boundary data we deduce existence of solutions by means of the Ljusternik–Schnirelmann theory.


2021 ◽  
Author(s):  
Alexander F. Kiefer ◽  
Spyridon Bousis ◽  
Mostafa M. Hamed ◽  
Eleonora Diamanti ◽  
Jörg Haupenthal ◽  
...  

Here, we report on a potent class of substituted ureidothiophenes targeting energy-coupling factor (ECF) transporters, an unexplored target, which is not addressed by any antibiotic on the market. Since the ECF module is crucial for the vitamin transport mechanism, prevention of substrate uptake should ultimately lead to cell death. By utilizing a combination of virtual and functional whole-cell screening of our in-house library, the membrane-bound protein mediated uptake of folate could be effectively inhibited. Structure-based optimization of our hit compound yielded low-micromolar inhibitors, whereby the most active compounds showed in addition potent antimicrobial activities against a panel of clinically relevant Gram-positive pathogens without significant cytotoxic effects.


Sign in / Sign up

Export Citation Format

Share Document