The Service Restoration in the Distribution System with Distributed Generators Based on the Heuristic Multi-Agent Evolutionary Algorithm

2011 ◽  
Vol 354-355 ◽  
pp. 1027-1030
Author(s):  
Li Jun Yang ◽  
Wei Li Wang

In view of a large number of distributed generators penetrated into distribution network, an improved hierarchical island operation was proposed to make the DG play the role as backup power supply in the service restoration of the distribution network; As the renewable distributed generators was strongly advocated, A new mathematical model was proposed to make full use of them. The service restoration problem is a constrained multi-objective optimization problem, a new algorithm which was the combination the heuristic algorithm and multi-agent evolutionary algorithm was proposed, it improved the multi-agent evolutionary algorithm with the Niche technologies to ensure the variety of the populations in the post-optimization and used the adaptive updating strategy to improve the convergence speed. The results of a case show feasibility and correctness of the model and the algorithm.

2021 ◽  
Author(s):  
Etiane O. P. de Carvalho ◽  
José Paulo R. Fernandes ◽  
Leandro T. Marques ◽  
João Bosco A. London Jr.

Distributed Generators (DGs) have been used to improve quality and reliability of service in Distribution Systems (DSs). They can be used to reduce faults impact on System Average Interruption Duration Index by allowing the minimization of healthy out-ofservice (OFS) loads after the occurrence of permanent faults. IEEE also encourages power supply companies and customers to restore OFS loads by intentional islanding. This paper proposes a modification in recently proposed Multi-Objective Evolutionary Algorithm (MOEA) in subpopulation tables to combine intentional islanding of DGs with network reconfiguration to maximize restoration of OFS loads. The idea is to force intentional islanding whenever OFS heathy areas can be fully supplied by DGs. Simulation results (with a DS presented in the literature) have demonstrated the reliability of the MOEA new version to deal with service restoration problem in the presence of DGs.


2019 ◽  
Vol 13 (1) ◽  
pp. 98-127 ◽  
Author(s):  
Arulraj Rajendran ◽  
Kumarappan Narayanan

PurposeThis paper aims to optimally plan distributed generation (DG) and capacitor in distribution network by optimizing multiple conflicting operational objectives simultaneously so as to achieve enhanced operation of distribution system. The multi-objective optimization problem comprises three important objective functions such as minimization of total active power loss (Plosstotal), reduction of voltage deviation and balancing of current through feeder sections.Design/methodology/approachIn this study, a hybrid configuration of weight improved particle swarm optimization (WIPSO) and gravitational search algorithm (GSA) called hybrid WIPSO-GSA algorithm is proposed in multi-objective problem domain. To solve multi-objective optimization problem, the proposed hybrid WIPSO-GSA algorithm is integrated with two components. The first component is fixed-sized archive that is responsible for storing a set of non-dominated pareto optimal solutions and the second component is a leader selection strategy that helps to update and identify the best compromised solution from the archive.FindingsThe proposed methodology is tested on standard 33-bus and Indian 85-bus distribution systems. The results attained using proposed multi-objective hybrid WIPSO-GSA algorithm provides potential technical and economic benefits and its best compromised solution outperforms other commonly used multi-objective techniques, thereby making it highly suitable for solving multi-objective problems.Originality/valueA novel multi-objective hybrid WIPSO-GSA algorithm is proposed for optimal DG and capacitor planning in radial distribution network. The results demonstrate the usefulness of the proposed technique in improved distribution system planning and operation and also in achieving better optimized results than other existing multi-objective optimization techniques.


2013 ◽  
Vol 303-306 ◽  
pp. 1276-1279
Author(s):  
Hai Na Rong ◽  
Yan Hui Qin

Power network reconfiguration is an important process in the improvement of operating conditions of a power system and in planning studies, service restoration and distribution automation when remote-controlled switches are employed. This paper presents the use of a quantum-inspired evolutionary algorithm to solve the distribution network reconfiguration problem. The quantum- inspired evolutionary algorithm is the combination product of quantum computing and evolutionary computation and is suitable for a class of integer programming problems such as the distribution network reconfiguration problem. After the analysis and formulation of the distribution network reconfiguration problem, the effectiveness and feasibility of the introduced method is verified by a large number of experiments.


2014 ◽  
Vol 672-674 ◽  
pp. 1175-1178
Author(s):  
Guang Min Fan ◽  
Ling Xu Guo ◽  
Wei Liang ◽  
Hong Tao Qie

The increasingly serious energy crisis and environmental pollution problems promote the large-scale application of microgrids (MGs) and electric vehicles (EVs). As the main carrier of MGs and EVs, distribution network is gradually presenting multi-source and active characteristics. A fast service restoration method of multi-source active distribution network with MGs and EVs is proposed in this paper for service restoration of distribution network, which takes effectiveness, rapidity, economy and reliability into consideration. Then, different optimal power flow (OPF) models for the service restoration strategy are constructed separately to minimize the network loss after service restoration. In addition, a genetic algorithm was introduced to solve the OPF model. The analysis of the service restoration strategy is carried out on an IEEE distribution system with three-feeder and eighteen nodes containing MGs and EVs, and the feasibility and effectiveness are verified


2014 ◽  
Vol 672-674 ◽  
pp. 956-960
Author(s):  
Ke Huang ◽  
Xin Wang ◽  
Yi Hui Zheng ◽  
Li Xue Li ◽  
Yan Ling Liu

To analyze the influence of distribution network with grid-connected photovoltaic (PV) generation on the power supply reliability, in this paper it firstly regards interconnected PV generation as an equivalent generator with rated capacity as well as the island operation mode of PV to set up a model for reliability calculation and analysis. Based on the network equivalent method, the structure of distribution system with PV is simplified and then the reliability indexes of distribution system are worked out based on Failure Mode and Effects Analysis (FMEA). At last, a comparative calculation between the distribution network with incorporated PV generations and that without PV generations is made. After analyzing a real example, the results suggest that integrating PV power generations reasonably into the distribution network can enhance the reliability of whole distribution system.


2015 ◽  
Vol 16 (5) ◽  
pp. 399-411 ◽  
Author(s):  
Abdelrahman Ahmed Akila ◽  
Ahmed Helal ◽  
Hussein Eldesouki

Abstract Distribution systems are traditionally designed as radial passive systems fed from a single source. Protection coordination of such systems has been easily established assuming the system radiality. Insertion of distributed generators (DGs) into distribution systems makes the distribution system to be more active which causes redistribution of fault currents magnitudes and directions. This causes negative impacts on the original protection system coordination, since the distribution system losses its radiality and passiveness. Recently protection coordination in the presence of distributed generation has been paid a great attention. Researchers proposed various solutions to solve the protection coordination problem caused by adding DG into the distribution network. In this paper, the proposed solutions for the protection coordination problem considering the DG insertion will be illustrated, classified, and criticized.


Sign in / Sign up

Export Citation Format

Share Document